• Laser & Optoelectronics Progress
  • Vol. 55, Issue 10, 102802 (2018)
Tong Yi, Xia Min, Yang Kecheng, Li Wei, and Guo Wenping
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop55.102802 Cite this Article Set citation alerts
    Tong Yi, Xia Min, Yang Kecheng, Li Wei, Guo Wenping. Target Reflection Feature Extraction Based on Lidar Intensity Value[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102802 Copy Citation Text show less
    References

    [1] Liu B, Zhang J, Lu M, et al. Research progress of laser radar applications[J]. Laser & Infrared, 2015, 45(2): 117-122.

    [2] Azim A, Aycard O. Detection, classification and tracking of moving objects in a 3D environment[C]. IEEE Intelligent Vehicles Symposium, June 3-7, 2012, Alcala de Henares, Spain. New York: IEEE, 2012: 802-807.

    [3] Korchev D, Cheng S, Owechko Y, et al. On real-time lidar data segmentation and classification[C]∥International Conference on Image Processing, Computer Vision, and Pattern Recognition, 2013.

    [4] Kidono K, Miyasaka T, Watanabe A, et al. Pedestrian recognition using high-definition LIDAR[J]. Journal of the Robotics Society of Japan, 2011, 29(10): 405-410.

    [5] Tan K, Cheng X J. Adaptive unsupervised classification of TLS point cloud based on intensity data[J]. Laser & Optoelectronics Progress, 2016, 53(3): 032801.

    [6] Cai Y, Xu W B, Liang D, et al. Distinguishing phyllostachys edulis age based on laser scanning intensity[J]. Chinese Journal of Lasers, 2018, 45(1): 0110003.

    [7] Kaasalainen S, Jaakkola A, Kaasalainen M, et al. Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: search for correction methods[J]. Remote Sensing, 2011, 3(10): 2207-2221.

    [8] Hfle B, Pfeifer N. Correction of laser scanning intensity data: data and model-driven approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(6): 415-433.

    [9] Cheng X L, Cheng X J, Li Q, et al. Laser intensity correction of terrestrial 3D laser scanning based on sectional polynomial model[J]. Laser & Optoelectronics Progress, 2017, 54(11): 112802.

    [10] Li Q, Cheng X J, Tian R, et al. Correction and normalization of multi-scan terrestrial three-dimensional laser scanning intensity[J]. Laser & Optoelectronics Progress, 2017, 54(12): 122802.

    [11] Pfeifer N, Hfle B, Briese C, et al. Analysis of the backscattered energy in terrestrial laser scanning data[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, 37: 1045-1052.

    [12] Dai Y J. Principle oflaser radar[M]. Beijing: National Defence Industry Press, 2002.

    [13] Li X L, Liang Y, Xu L J. Bidirectional reflectance distribution function based surface modeling of non-Lambertian using intensity data of light detection and ranging[J]. Journal of the Optical Society of America A, 2014, 31(9): 2055-2063.

    [14] Pfeifer N, Dorninger P, Haring A, et al. Investigating terrestrial laser scanning laser scanning intensity data: quality and functional relations[C]∥8th Conference on Optical 3D Measurement Techniques, 2006: 328-337.

    [15] Phong B T. Illumination for computer generated pictures[J]. Communications of the ACM, 1975, 18(6): 311-317.

    [16] Li X L, Ma L, Xu L J. Empirical modeling for non-Lambertian reflectance based on full-waveform laser detection[J]. Optical Engineering, 2013, 52(11): 116110.

    Tong Yi, Xia Min, Yang Kecheng, Li Wei, Guo Wenping. Target Reflection Feature Extraction Based on Lidar Intensity Value[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102802
    Download Citation