• Laser & Optoelectronics Progress
  • Vol. 53, Issue 8, 80002 (2016)
Hu Zhitao1、2、*, He Bing2, Zhou Jun2、3, and Zhang Jianhua1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/lop53.080002 Cite this Article Set citation alerts
    Hu Zhitao, He Bing, Zhou Jun, Zhang Jianhua. Research Progress in Thermal Effect of High Power Fiber Lasers[J]. Laser & Optoelectronics Progress, 2016, 53(8): 80002 Copy Citation Text show less
    References

    [1] Brown D C, Hoffman H J. Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers[J]. IEEE Journal of Quantum Electronics, 2001, 37(2): 207-217.

    [2] Brilliant N A, Lagonik K. Thermal effects in a dual-clad ytterbium fiber laser[J]. Optics Letters, 2001, 26(21): 1669-1671.

    [3] Canat G, Mollier J C, Jaoun Y, et al. Evidence of thermal effects in a high-power Er3+-Yb3+ fiber laser[J]. Optics Letters, 2005, 30(22): 3030-3032.

    [4] Han Xu, Feng Guoying, Han Jinghua, et al. Fiber damage and theoretical analyses for high power Yb-doped double-clad fiber laser[J]. Acta Photonica Sinica, 2009, 38(10): 2468-2472.

    [5] Grukh D A, Paramonov V M, Kurkov A S, et al. Effect of heating on the optical properties of Yb3+-doped fibres and fibre lasers[J]. Quantum Electronics, 2004, 34(6): 579-582.

    [6] Wang Y, Xu C Q, Hong P. Thermal effects in kilowatt fiber lasers[J]. IEEE Photonics Technology Letters, 2004, 16(1): 63-65.

    [7] Xiong Yue, Pan Wei, Luo Bin, et al. Thermal effects in Yb-doped double-clad high power fiber lasers[J]. High Power Laser and Particle Beams, 2005, 17(4): 495-499.

    [8] Wang Y. Heat dissipation in kilowatt fiber power amplifiers[J]. IEEE Journal of Quantum Electronics, 2004, 40(6): 731-740.

    [9] Zhu Hongtao, Lou Qihong, Zhou Jun, et al. Experimental and theoretical study on designing of cooling device for the kilowatt-level double cladding fiber laser[J]. Acta Physica Sinica, 2008, 57(8): 4966-4971.

    [10] Fan Y Y, He B, Zhou J, et al. Thermal effects in kilowatt all-fiber MOPA[J]. Optics Express, 2011, 19(16): 15162-15172.

    [11] Gao Xuesong, Gao Chunqing, Lin Zhifeng, et al. Numerical analysis of the temperature distribution of high power double cladding fiber laser[J]. Journal of Beijing Institute of Technology, 2005, 25(11): 998-1002.

    [12] Li L, Li H, Qiu T, et al. 3-dimensional thermal analysis and active cooling of short-length high-power fiber lasers[J]. Optics Express, 2005, 13(9): 3420-3428.

    [13] Jeong Y, Baek S, Dupriez P, et al. Thermal characteristics of an end-pumped high-power ytterbium-sensitized erbium-doped fiber laser under natural convection[J]. Optics Express, 2008, 16(24): 19865-19871.

    [14] He Bing, Fan Yuanyuan, Zhou Jun. Method for measuring temperature of optical fiber core: CN101762343A[P]. 2010-06-03.

    [15] Chen Z, Hou J, Jiang Z. Theoretical analysis of thermal effects in fiber laser from the moment when pump is turned on to steady-state[J]. Chinese Optics Letters, 2007, 5(3): 178-180.

    [16] Liu T, Yang Z M, Xu S H. Analytical investigation on transient thermal effects in pulse end-pumped short-length fiber laser[J]. Optics Express, 2009, 17(15): 12875-12890.

    [17] Beier F, Heinzig M, Walbaum T, et al. Determination of thermal load from core temperature measurements in single mode ytterbium-doped fiber amplifiers[C]. Advanced Solid State Lasers, Berlin, 2015: ATh2A.23.

    [18] Hansen K R, Alkeskjold T T, Broeng J, et al. Thermo-optical effects in high-power ytterbium-doped fiber amplifiers[J]. Optics Express, 2011, 19(24): 23965-23980.

    [19] Lapointe M-A , Chatigny S, Piché M, et al. Thermal effects in high-power CW fiber lasers[C]. SPIE, 2009, 7195: 71951U.

    [20] Huang Z Y, Ng T Y, Seah C P, et al. Thermal modeling of active fiber and splice points in high power fiber laser[C]. SPIE, 2011, 7914: 79142W.

    [21] Ward B, Robin C, Dajani I. Origin of thermal modal instabilities in large mode area fiber amplifiers[J]. Optics Express, 2012, 20(10): 11407-11422.

    [22] Daniel J M O, Simakov N, Hemming A, et al. A double clad ytterbium fibre laser operating at 400 ℃[C]. SPIE, 2015, 9344: 934414.

    [23] Jiang Qiujie, Yan Ping, Zhang Jinge, et al. Analysis on thermal characteristic of ytterbium-doped fiber lasers[J]. Chinese J Lasers, 2008, 35(6): 827-829.

    [24] Gorjan M, Marinek M, opi, et al. Pump absorption and temperature distribution in erbium-doped double-clad fluoride-glass fibers[J]. Optics Express, 2009, 17(22): 19814-19822.

    [25] Xue Dong, Zhou Jun, Lou Qihong, et al. Thermal effect and power limit in high power double-clad fiber laser[J]. High Power Laser and Particle Beams, 2009, 21(7): 1013-1018.

    [26] Zintzen B, Langer T, Geiger J, et al. Heat transport in solid and air-clad fibers for high-power fiber lasers[J]. Optics Express, 2007, 15(25): 16787-16793.

    [27] Zintzen B, Langer T, Geiger J, et al. Optimization of the heat transfer in multi-kW-fiber-lasers[C]. SPIE, 2008, 6873: 687319.

    [28] Li P, Zhu C, Zou S, et al. Theoretical and experimental investigation of thermal effects in a high power Yb3+-doped double-clad fiber laser[J]. Optics & Laser Technology, 2008, 40(2): 360-364.

    [29] Shen Yueguo, Lü Xuliang, Zhu Hongtao, et al. A numerical analysis on the distribution of temperatures in the double-cladding fiber laser[J]. Journal of Nanjing University, 2010, 46(4): 412-418.

    [30] Huang Zhihe, Cao Jianqiu, Guo Shaofeng, et al. Simulation of the distributed side-coupled cladding-pumped fiber lasers[J]. Laser & Optoelectronics Progress, 2014, 51(4): 040605.

    [32] Chen Shuang, Feng Ying. Temperature distribution in high power photonic crystal fiber laser[J]. Acta Photonica Sinica, 2008, 37(6): 1134-1138.

    [33] Yan P, Xu A, Gong M. Numerical analysis of temperature distributions in Yb-doped double-clad fiber lasers with consideration of radiative heat transfer[J]. Optical Engineering, 2006, 45(12): 124201.

    [34] Fan Y Y, He B, Zhou J, et al. Efficient heat transfer in high-power fiber lasers[J]. Chinese Optics Letters, 2012, 10(11): 111401.

    [35] Dai Shoujun, He Bing, Zhou Jun, et al. Cooling technology of high-power and high-power fiber laser amplifier[J]. Chinese J Lasers, 2013, 40(5): 0502003.

    [36] Li Tenglong, Sun Yinhong, Ma Yi, et al. Theoretical and experimental study on kW all fiber laser[J]. High Power Laser and Particle Beams, 2014, 26(8): 081001.

    [37] Dong Fanlong, Ge Tingwu, Zhang Xuexia, et al. Heat management of 1 kW Yb-doped all-fiber amplifier[J]. Laser & Infrared, 2015(7): 790-794.

    [38] Zhang Y, Zhao L, Li C, et al. Study on the thermal distribution and thermal management of high average power fiber lasers[C]. SPIE, 2015, 9255: 92550N.

    [39] Du Xueyuan, Su Rongtao, Wang Xiaolin, et al. Research on fiber laser performance working at different temperatures[J]. Chinese J Lasers, 2015, 42(s1): s102004.

    [40] Mu W, Si X, Lin Y J, et al. Research of new packaging and cooling technique for high power fiber laser used pump coupler[C]. SPIE, 2015, 9671: 96710T.

    [41] Creeden D, Johnson B R, Jones C, et al. Packaging of fiber lasers and components for use in harsh environments[C]. SPIE, 2016, 9730: 973013.

    CLP Journals

    [1] Zhang Kuo, Yu Deyang, He Yang, Pan Qikun, Chen Fei, Li Dianjun. Analysis on Cooling Performance of Compact Mid-Infrared Solid State Laser[J]. Chinese Journal of Lasers, 2017, 44(3): 301002

    [2] Chen Yuejian, Jiang Hao, Wang Juntao, Zhou Tangjian, Tong Lixin, Wu Zhenhai, Xu Liu, Wang Dan, Gao Qingsong. Planar Waveguide Oscillator with High Output Power and High Efficiency[J]. Chinese Journal of Lasers, 2017, 44(4): 401001

    [3] Su Yongsheng, Li Liang, Gao Hong, Wang Jianbin, Wang Gang. Laser Surface Texturing of Super-Hard Cutting Tools and Control of Texture Morphology[J]. Laser & Optoelectronics Progress, 2017, 54(12): 121408

    Hu Zhitao, He Bing, Zhou Jun, Zhang Jianhua. Research Progress in Thermal Effect of High Power Fiber Lasers[J]. Laser & Optoelectronics Progress, 2016, 53(8): 80002
    Download Citation