• Acta Optica Sinica
  • Vol. 35, Issue 7, 704001 (2015)
Li Xuechen*, Chu Jingdi, Bao Wenting, Zhang Qi, and Jia Pengying
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201535.0704001 Cite this Article Set citation alerts
    Li Xuechen, Chu Jingdi, Bao Wenting, Zhang Qi, Jia Pengying. Study on Discharge Characteristics of a Direct Current-Voltage Excited Plasma Jet[J]. Acta Optica Sinica, 2015, 35(7): 704001 Copy Citation Text show less
    References

    [1] Luo Haiyun, Zhou Liang, Bo Lv, et al.. Observation of the transition from a Townsend discharge to a glow discharge in helium at atmospheric pressure[J]. Appl Phys Lett, 2007, 91(22): 221504.

    [2] Han S Uhm, Eun H Choi, Jae Y Lim. Secondary electron emission in a mixed gas for application to the plasma display panel[J]. Appl Phys Lett, 2002, 80(5): 737-739.

    [3] Nicolas G, Steve M, Francoise M. A new approach to SiO2 deposit using a N2-SiH4-N2O glow dielectric barrier-controlled discharge at atmospheric pressure[J]. J Phys D: Appl Phys, 2000, 33(19): L104-L108.

    [4] Jiang Yongxiang, Liu Binghong, Zhu Xiaosong, et al.. Study of silver coated hollow-core fiber surface plasmon resonance sensor[J]. Acta Optica Sinica, 2014, 34(2): 0223004.

    [5] Qi Pan, Ma Xiao, Zhong Jingang, et al.. Application of portable surface plasmon resonance biosensor in the quantitative detection of low concentration solution[J]. Laser & Optoelectronics Progress, 2014, 51(7): 072802.

    [6] Zhang Pengcheng, Lv Min, Chen Xiao, et al.. Study and fabrication of surface-resonance fiber optic sensor with tapered probe [J]. Chinese J Lasers, 2013, 40(3): 0305005.

    [7] Joosung Kim, Dongjin Byun, Jin-sang Kim, et al.. Low-temperature growth of GaN by atomic nitrogen based on a dielectric barrier discharge[J]. Journal of Crystal Growth, 2000, 210(4): 478-486.

    [8] Takaki K, Hosokawa M, Sasaki T, et al.. Production of atmospheric-pressure glow discharge in nitrogen using needle-array electrode [J]. Appl Phys Lett, 2005, 86(15): 151501.

    [9] Ni T L, Ding F, Zhu X D, et al.. Cold microplasma plume produced by a compact and flexible generator at atmospheric pressure[J]. Appl Phys Lett, 2008, 92(24): 241503.

    [10] Kurihara K, Sasaki K, Kawarada M, et al.. High rate synthesis of diamond by dc plasma jet chemical vapor deposition[J]. Appl Phys Lett, 1988, 52(6): 437.

    [11] Ye Rubin, Zheng Wei. Temporal-spatial-resolved spectroscopic study on the formation of an atmospheric pressure microplasma jet[J]. Appl Phys Lett, 2008, 93(7): 071502.

    [12] Lu Xin Pei, Laroussi Mounir, Dynamics of an atmospheric pressure plasma plume generated by submicrosecond voltage pulses[J]. J Appl Phys, 2006, 100(6): 063302.

    [13] Walsh J L, Iza F, Janson N B, et al.. Three distinct modes in a cold atmospheric pressure plasma jet[J]. J Phys D: Appl Phys, 2010, 43(7): 075201.

    [14] Kim Dan Bee, Rhee J K, Gweon B, et al.. Comparative study of atmospheric pressure low and radio frequency microjet plasmas produced in a single electrode configuration[J]. Appl Phys Lett, 2007, 91(15): 151502.

    [15] Liu J H, Liu X Y, Hu K, et al.. Plasma plume propagation characteristics of pulsed radio frequency plasma jet[J]. Appl Phys Lett, 2011, 98(15): 151502.

    [16] Walsh J L, Kong M G, Room-temperature atmospheric argon plasma jet sustained with submicrosecond high-voltage pulses[J]. Appl Phys Lett, 2007, 91(22): 221502.

    [17] Lu XinPei, Laroussi Mounir. Dynamics of an atmospheric pressure plasma plume generated by submicrosecond voltage pulses[J]. J Appl Phys, 2006, 100(6): 063302.

    [18] Walsh J L, Kong M G. Portable nanosecond pulsed air plasma jet[J]. Appl Phys Lett, 2011, 99(8): 081501.

    [19] Machala Z, Jedlovsky I, Martisovits V. DC discharges in atmospheric air and their transitions[J]. IEEE Trans Plasma Sci, 2008, 36(4): 918-919.

    [20] Janda Mario, Martisovits Viktor, Machala Zdenko. Transient spark: a dc-driven repetitively pulsed discharge and its control by electric circuit parameters[J]. Plasma Sources Sci Technol, 2011, 20(3): 035015.

    [21] Bussiahn R, Brandenburg R, Gerling T, et al.. The hairline plasma: an intermittent negative dc-corona discharge at atmospheric pressure for plasma medical applica tions[J]. Appl Phys Lett, 2010, 96(14): 143701.

    [22] Li Xuechen, Di Cong, Jia Pengying, et al.. Characteristics of an atmospheric-pressure argon plasma jet excited by a dc voltage[J]. Plasma Sources Sci Technol, 2013, 22(4): 045007.

    [23] Li Xuechen, Chang Yuanyuan, Xu Longfei. Optical investigation on the discharge characteristics of the upstream region in dielectric barrier discharge[J]. Acta Optica Sinica, 2013, 33(7): 0730001.

    [24] Ilija Stefanovic′ , Thomas Kuschel, Sandra Schroter , et al.. Argon metastable dynamics and lifetimes in a direct current microdischarge[J]. J Appl Phys, 2014, 116(11): 113302.

    [25] Lu XinPei, Mounir Laroussi. Dynamics of an atmospheric pressure plasma plume generated by submicrosecond voltage pulses[J]. J Appl Phys, 2006, 100(6): 063302.

    [26] Li Yonghui, Dong Lifang. Spatial distribution of atmospheric plasma jet temperature[J]. Acta Optica Sinica, 2013, 33(4): 0430003.

    [27] Walsh J L, Kong M G. Room-temperature atmospheric argon plasma jet sustained with submicrosecond high-voltage pulses[J]. Appl Phy Lett, 2007, 91(22): 221502.

    [28] Annemie Bogaerts, Renaat Gijbels, Jaroslav Vlcek. Modeling of glow discharge optical emission spectrometry: calculation of the argon atomic optical emission spectrum[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 1998, 53(11): 1517-1526.

    [29] Li Xuemei, Tang Jie, Zhan Xuefang, et al.. A dielectric-barrier discharge enhanced plasma brush array at atmospheric pressure [J]. Appl Phy Lett, 2013, 103(3): 033519.

    CLP Journals

    [1] Li Yaru, Li Xuechen, Jia Pengying, Zhang Panpan, Geng Jinling. Optical Diagnosis on Plasma Parameters of a Plasma Plume Generated by Dielectric Barrier Discharge[J]. Acta Optica Sinica, 2017, 37(4): 430002

    Li Xuechen, Chu Jingdi, Bao Wenting, Zhang Qi, Jia Pengying. Study on Discharge Characteristics of a Direct Current-Voltage Excited Plasma Jet[J]. Acta Optica Sinica, 2015, 35(7): 704001
    Download Citation