• Laser & Optoelectronics Progress
  • Vol. 62, Issue 2, 0228004 (2025)
Fu Lü1,2,*, Yuxuan Xie1, and Yongan Feng1
Author Affiliations
  • 1School of Software, Liaoning Technical University, Huludao 125105, Liaoning , China
  • 2Department of Basic Teching, Liaoning Technical University, Huludao 125105, Liaoning , China
  • show less
    DOI: 10.3788/LOP241179 Cite this Article Set citation alerts
    Fu Lü, Yuxuan Xie, Yongan Feng. Incorporation of Multiscale Hierarchical Features for Remote-Sensing Classification[J]. Laser & Optoelectronics Progress, 2025, 62(2): 0228004 Copy Citation Text show less
    References

    [1] Huang X, Wen D W, Li J Y et al. Multi-level monitoring of subtle urban changes for the megacities of China using high-resolution multi-view satellite imagery[J]. Remote Sensing of Environment, 196, 56-75(2017).

    [2] Longbotham N, Chaapel C, Bleiler L et al. Very high resolution multiangle urban classification analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 50, 1155-1170(2012).

    [3] Lü Z Y, Shi W Z, Zhang X K et al. Landslide inventory mapping from bitemporal high-resolution remote sensing images using change detection and multiscale segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11, 1520-1532(2018).

    [4] Chen M, Liu D Y, Qian K J et al. Lunar crater detection based on terrain analysis and mathematical morphology methods using digital elevation models[J]. IEEE Transactions on Geoscience and Remote Sensing, 56, 3681-3692(2018).

    [5] Ye F M, Xiao H, Zhao X Q et al. Remote sensing image retrieval using convolutional neural network features and weighted distance[J]. IEEE Geoscience and Remote Sensing Letters, 15, 1535-1539(2018).

    [6] Ni K, Zhai M L, Wang P. Scene classification of remote sensing images based on wavelet-spatial high-order feature aggregation network[J]. Acta Optica Sinica, 42, 2428005(2022).

    [7] Cheng R J, Yang Y, Li L W et al. Lightweight residual network based on depthwise separable convolution for hyperspectral image classification[J]. Acta Optica Sinica, 43, 1228010(2023).

    [8] Bi Q, Qin K, Zhang H et al. APDC-net: attention pooling-based convolutional network for aerial scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 17, 1603-1607(2020).

    [9] Wang S Z, Guan X, Li Q. Hyperspectral image super-resolution network of local-global attention feature reuse[J]. Acta Optica Sinica, 43, 2115001(2023).

    [10] Vaswani A, Shazeer N M, Parmar N et al. Attention is all you need[EB/OL]. https://arxiv.org/abs/1706.03762

    [11] Dosovitskiy A, Beyer L, Kolesnikov A et al. An image is worth[EB/OL], 16-16. https://arxiv.org/abs/2010.11929

    [12] Bazi Y, Bashmal L, Al Rahhal M M et al. Vision transformers for remote sensing image classification[J]. Remote Sensing, 13, 516(2021).

    [13] Lv P Y, Wu W J, Zhong Y F et al. SCViT: a spatial-channel feature preserving vision transformer for remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 4409512(2022).

    [14] Sha Z Y, Li J F. MITformer: a multiinstance vision transformer for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 19, 6510305(2022).

    [15] Chen Y H, Wang B, Yan Q Y et al. Hyperspectral remote-sensing classification combining Transformer and multiscale residual mechanisms[J]. Laser & Optoelectronics Progress, 60, 1228002(2023).

    [16] Dong S J, Chen Z C. A multi-level feature fusion network for remote sensing image segmentation[J]. Sensors, 21, 1267(2021).

    [17] Anwer R M, Khan F S, van de Weijer J et al. Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 138, 74-85(2018).

    [18] Cheng G, Xie X X, Han J W et al. Remote sensing image scene classification meets deep learning: challenges, methods, benchmarks, and opportunities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 3735-3756(2020).

    [19] Chen J R, Kao S H, He H et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C], 12021-12031(2023).

    [20] Gu J Q, Kwon H, Wang D L et al. Multi-scale high-resolution vision transformer for semantic segmentation[C], 12084-12093(2022).

    [21] Guo J Y, Han K, Wu H et al. CMT: convolutional neural networks meet vision transformers[C], 12165-12175(2022).

    [22] Zamir S W, Arora A, Khan S et al. Restormer: efficient transformer for high-resolution image restoration[C], 5718-5729(2022).

    [23] Bai H R, Pan J S, Xiang X G et al. Self-guided image dehazing using progressive feature fusion[J]. IEEE Transactions on Image Processing, 31, 1217-1229(2022).

    [24] Ye T, Jiang M C, Zhang Y C et al. Perceiving and modeling density is all you need for image dehazing[EB/OL]. http://arxiv.org/abs/2111.09733v1

    [25] Dong H, Pan J S, Xiang L et al. Multi-scale boosted dehazing network with dense feature fusion[C], 2154-2164(2020).

    [26] Cheng G, Li Z P, Yao X W et al. Remote sensing image scene classification using bag of convolutional features[J]. IEEE Geoscience and Remote Sensing Letters, 14, 1735-1739(2017).

    [27] Xia G S, Hu J W, Hu F et al. AID: a benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 3965-3981(2017).

    [28] Selvaraju R R, Cogswell M, Das A et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C], 618-626(2017).

    [29] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [30] Aral R A, Keskin Ş R, Kaya M et al. Classification of TrashNet dataset based on deep learning models[C], 2058-2062(2018).

    [31] Wang W H, Xie E Z, Li X et al. Pyramid vision transformer: a versatile backbone for dense prediction without convolutions[C], 548-558(2021).

    [32] Yuan L, Chen Y P, Wang T et al. Tokens-to-token ViT: training vision transformers from scratch on ImageNet[C], 538-547(2021).

    [33] Liu Z, Lin Y T, Cao Y et al. Swin transformer: hierarchical vision transformer using shifted windows[C], 9992-10002(2021).

    [34] Tang X, Li M T, Ma J J et al. EMTCAL: efficient multiscale transformer and cross-level attention learning for remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5626915(2022).

    [35] Chen W T, Ouyang S B, Tong W et al. GCSANet: a global context spatial attention deep learning network for remote sensing scene classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 1150-1162(2022).

    [36] Wang J J, Li W, Zhang M M et al. Remote-sensing scene classification via multistage self-guided separation network[J]. IEEE Transactions on Geoscience and Remote Sensing, 61, 5615312(2023).

    [37] Zhao Y B, Liu J J, Yang J L et al. EMSCNet: efficient multisample contrastive network for remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 61, 5605814(2023).