• Acta Optica Sinica
  • Vol. 39, Issue 3, 0301004 (2019)
Fei Gao, Bo Huang, Dongchen Shi, Qingsong Zhu, Rui Zhang, Li Wang, Shichun Li, and Dengxin Hua*
Author Affiliations
  • School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
  • show less
    DOI: 10.3788/AOS201939.0301004 Cite this Article Set citation alerts
    Fei Gao, Bo Huang, Dongchen Shi, Qingsong Zhu, Rui Zhang, Li Wang, Shichun Li, Dengxin Hua. Design and Simulation of Pure Rotational Raman Lidar System for Daytime Detection of Atmospheric Temperature[J]. Acta Optica Sinica, 2019, 39(3): 0301004 Copy Citation Text show less
    Spectral relative intensity distribution. (a) Mie-Rayleigh scattering spectrum; (b) pure rotational Raman spectra
    Fig. 1. Spectral relative intensity distribution. (a) Mie-Rayleigh scattering spectrum; (b) pure rotational Raman spectra
    Spectral intensity diagram of solar radiation
    Fig. 2. Spectral intensity diagram of solar radiation
    Ozone absorption scattering cross sections of
    Fig. 3. Ozone absorption scattering cross sections of
    Measurement uncertainty of relative temperature under different temperature pairs (All ΔT are the results of the ratio processing of the minimum value of the corresponding graph). (a) Anti-Stokes (225 K, 220 K); (b) Anti-Stokes (250 K, 245 K); (c) Anti-Stokes 270 K; (d) Stokes (225 K, 220 K); (e) Stokes(250 K,245 K); (f) Stokes (275 K,270 K)
    Fig. 4. Measurement uncertainty of relative temperature under different temperature pairs (All ΔT are the results of the ratio processing of the minimum value of the corresponding graph). (a) Anti-Stokes (225 K, 220 K); (b) Anti-Stokes (250 K, 245 K); (c) Anti-Stokes 270 K; (d) Stokes (225 K, 220 K); (e) Stokes(250 K,245 K); (f) Stokes (275 K,270 K)
    Schematic of solar-blind ultraviolet pure rotational Raman lidar system
    Fig. 5. Schematic of solar-blind ultraviolet pure rotational Raman lidar system
    Diffraction grating spectrometers. (a) Single diffraction; (b) double diffractions
    Fig. 6. Diffraction grating spectrometers. (a) Single diffraction; (b) double diffractions
    Comparison of diffraction spots of grating spectrometer. (a) Single diffraction; (b) double diffraction
    Fig. 7. Comparison of diffraction spots of grating spectrometer. (a) Single diffraction; (b) double diffraction
    triple-diffraction double grating polychromator
    Fig. 8. triple-diffraction double grating polychromator
    Comparison of diffraction spots. (a) Double diffraction spot; (b) triple diffraction spot
    Fig. 9. Comparison of diffraction spots. (a) Double diffraction spot; (b) triple diffraction spot
    Effect ofozone on detection of solar-blind Raman lidar. (a) Difference of atmospheric transmission due to ozone absorption cross section of pure rotational Raman spectra; (b) effect of atmospheric transmission with and without ozone absorption
    Fig. 10. Effect ofozone on detection of solar-blind Raman lidar. (a) Difference of atmospheric transmission due to ozone absorption cross section of pure rotational Raman spectra; (b) effect of atmospheric transmission with and without ozone absorption
    Fluorescence intensity of biomolecules for 266 nm excitation[22]
    Fig. 11. Fluorescence intensity of biomolecules for 266 nm excitation[22]
    Simulation results of solar-blind ultraviolet pure rotational Raman lidar. (a) Signal intensity of each channel; (b) signal-to-noise ratio of each channel
    Fig. 12. Simulation results of solar-blind ultraviolet pure rotational Raman lidar. (a) Signal intensity of each channel; (b) signal-to-noise ratio of each channel
    MoleculeB0 /cm-1gJ(even)gJ(odd)Iγ2 /(10-48cm6)h /(J∙s)c /(m∙s-1)k /(J∙K-1)
    N21.9895006310.5096.626×10-342.9979×1081.38×10-23
    O21.1376820101.27
    Table 1. Relevant parameters of pure rotational Raman spectra
    ParameterValueParameterValue
    Transmitter Nd…YAG pulsed laserWavelength /nm266.0Receiver Cassegrain telescopeDiameter /mm400
    Repetition rate /nm10Focal length /mm3000
    Pulse energy /nm150Field of view /mrad0.2
    Grating(G)Groove number /(line·mm-1)3600Mirror(M)/Lens(L)Dimension(M)/(mm×mm×mm)112×112×20
    Blazed wavelength /nm230Focal length(L) /mm250
    Dimension /(mm×mm×mm)120×100×20Diameter(L) /mm125
    Detector PMT(HamamatsuR7154)Quantum efficiency0.23FiberDiameter /μm300-500
    Gain1.0×107
    Table 2. Parameters of solar-blind ultraviolet pure rotational Raman lidar system
    Fei Gao, Bo Huang, Dongchen Shi, Qingsong Zhu, Rui Zhang, Li Wang, Shichun Li, Dengxin Hua. Design and Simulation of Pure Rotational Raman Lidar System for Daytime Detection of Atmospheric Temperature[J]. Acta Optica Sinica, 2019, 39(3): 0301004
    Download Citation