• Infrared and Laser Engineering
  • Vol. 52, Issue 3, 20220505 (2023)
Jingjing Liao1,2, Lianqing Zhu2,3, Yanming Song1,3, Jingtao Xin1,2, and Zheng Lv3
Author Affiliations
  • 1Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, Beijing 100192, China
  • 2Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science & Technology University, Beijing 100016, China
  • 3Beijing Key Laboratory of Optoelectronic Measurement Technology, Beijing Information Science & Technology University, Beijing 100192, China
  • show less
    DOI: 10.3788/IRLA20220505 Cite this Article
    Jingjing Liao, Lianqing Zhu, Yanming Song, Jingtao Xin, Zheng Lv. Fiber Bragg grating temperature insensitive filter based on bimetal structure[J]. Infrared and Laser Engineering, 2023, 52(3): 20220505 Copy Citation Text show less
    Schematic diagram of bimetal structure
    Fig. 1. Schematic diagram of bimetal structure
    Temperature sensitivity coefficient versus L1/L2
    Fig. 2. Temperature sensitivity coefficient versus L1/L2
    Spectrum of ultra-short fiber grating
    Fig. 3. Spectrum of ultra-short fiber grating
    (a) Schematic diagram and (b) physical drawing of temperature insensitive filter
    Fig. 4. (a) Schematic diagram and (b) physical drawing of temperature insensitive filter
    Experimental setup
    Fig. 5. Experimental setup
    Fitting curve of the center wavelength of the tested fiber grating filter with temperature
    Fig. 6. Fitting curve of the center wavelength of the tested fiber grating filter with temperature
    MaterialAluminumBrassIronInvarQuartzGlass
    Coefficient of thermal expansion/℃23.9×10−619.00×10−612.20×10−61.00×10−60.55×10−64.00×10−6
    Table 1. Thermal expansion coefficient of common materials
    Bimetallic materialRelationship between L1/L2 and temperature sensitivity coefficient When ∆Y=0.1 pm/℃, the change of x/mm
    Brass/AluminumY= –5.85913x+45.50557 ±0.01707
    Iron/BrassY= –8.13103x+41.91835 ±0.01229
    Iron/AluminumY= –13.99016x+53.6366 ±0.00715
    Invar/AluminumY= –27.38245x+67.02889 ±0.00366
    Invar/BrassY= –21.52332x+55.31064 ±0.00465
    Invar/IronY= –13.39229x+39.04858 ±0.00747
    Table 2. Variation range of L1/L2 with different combinations of metal materials
    Ration/mmThe range of variables/mm
    L1=70 L2=9.013±0.0197
    L2=8 L1=62.128±0.136
    Table 3. Value range of quantitative corresponding variables
    L1/L2The length of L1/mm Temperature sensitivity coefficient/pm·℃−1
    7.78062.240–0.07846
    7.77562.200–0.04916
    7.76662.1280.00005
    7.75062.0000.09731
    Table 4. Relationship between L1/L2 and sensitivity coefficient
    ParameterParameter nameNumerical value
    L1/mm Length between fixed points on the base69, 67.1, 65.35, 62.25
    L2/mm Filter fiber grating length8
    $ {\alpha }_{1} $/℃−1Coefficient of thermal expansion of brass substrate19×10−6
    $ {\alpha }_{2} $/℃−1Strain transfer beam aluminum thermal expansion coefficient23.9×10−6
    Table 5. Filter size parameters
    L1/L2The length of L1/mm Temperature sensitivity coefficient/pm·℃−1
    8.6369−2.23
    8.3967.10.15
    8.1765.351.41
    7.7862.252.4
    Table 6. Temperature sensitivity coefficient corresponding to different L1/L2
    Jingjing Liao, Lianqing Zhu, Yanming Song, Jingtao Xin, Zheng Lv. Fiber Bragg grating temperature insensitive filter based on bimetal structure[J]. Infrared and Laser Engineering, 2023, 52(3): 20220505
    Download Citation