• Photonics Research
  • Vol. 9, Issue 9, 1719 (2021)
Yosuke Mizuno1、*, Antreas Theodosiou2, Kyriacos Kalli2, Sascha Liehr3, Heeyoung Lee4, and Kentaro Nakamura5
Author Affiliations
  • 1Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan
  • 2Photonics and Optical Sensors Research Laboratory, Cyprus University of Technology, Limassol 3036, Cyprus
  • 3DiGOS Potsdam GmbH, Telegrafenberg, Potsdam 14473, Germany
  • 4College of Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan
  • 5Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
  • show less
    DOI: 10.1364/PRJ.435143 Cite this Article Set citation alerts
    Yosuke Mizuno, Antreas Theodosiou, Kyriacos Kalli, Sascha Liehr, Heeyoung Lee, Kentaro Nakamura. Distributed polymer optical fiber sensors: a review and outlook[J]. Photonics Research, 2021, 9(9): 1719 Copy Citation Text show less
    References

    [1] A. H. Hartog. An Introduction to Distributed Optical Fibre Sensors(2017).

    [2] A. Motil, A. Bergman, M. Tur. State of the art of Brillouin fiber-optic distributed sensing. Opt. Laser Technol., 78, 81-103(2016).

    [3] B. Lee. Review of the present status of optical fiber sensors. Opt. Fiber Technol., 9, 57-79(2003).

    [4] C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Bao, W. Habel, Z. Zhou, J. Ou, M. Ghandehari, H. C. Wu, M. Imai. Review: optical fiber sensors for civil engineering applications. Mater. Struct., 48, 871-906(2015).

    [5] K. L. Brogan, D. R. Walt. Optical fiber-based sensors: application to chemical biology. Curr. Opin. Chem. Biol., 9, 494-500(2005).

    [6] A. H. Hartog, D. N. Payne. Remote measurement of temperature distribution using an optical fibre. European Conference on Optical Communication (ECOC), 215-220(1982).

    [7] M. Froggatt, J. Moore. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter. Appl. Opt., 37, 1735-1740(1998).

    [8] S. V. Shatalin, V. N. Treschikov, A. J. Rogers. Interferometric optical time-domain reflectometry for distributed optical-fiber sensing. Appl. Opt., 37, 5600-5604(1998).

    [9] A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, B. D. Dickerson. One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber. IEEE Sens. J., 8, 1375-1380(2008).

    [10] Y. Koyamada, M. Imahama, K. Kubota, K. Hogari. Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR. J. Lightwave Technol., 27, 1142-1146(2009).

    [11] T. Chen, Q. Wang, R. Chen, B. Zhang, K. P. Chen, M. Maklad, P. R. Swinehart. Distributed hydrogen sensing using in-fiber Rayleigh scattering. Appl. Phys. Lett., 100, 191105(2012).

    [12] J. Song, W. Li, P. Lu, Y. Xu, L. Chen, X. Bao. Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry. IEEE Photon. J., 6, 6801408(2014).

    [13] J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, M. Gonzalez-Herraez. Single-shot distributed temperature and strain tracking using direct detection phase sensitive OTDR with chirped pulses. Opt. Express, 24, 13121-13133(2016).

    [14] A. Yan, S. Huang, S. Li, R. Chen, P. Ohodnicki, M. Buric, S. Lee, M.-J. Li, K. P. Chen. Distributed optical fiber sensors with ultrafast laser enhanced Rayleigh backscattering profiles for real-time monitoring of solid oxide fuel cell operations. Sci. Rep., 7, 9369(2017).

    [15] P. Lu, S. J. Mihailov, D. Coulas, H. Ding, X. Bao. Low loss random fiber gratings made with a fs-IR laser for distributed fiber sensing. J. Lightwave Technol., 37, 4697-4702(2019).

    [16] T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada. Brillouin optical-fiber time domain reflectometry. IEICE Trans. Commun., E76-B, 382-390(1993).

    [17] T. Horiguchi, M. Tateda. BOTDA—nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory. J. Lightwave Technol., 7, 1170-1176(1989).

    [18] A. Minardo, R. Bernini, R. Ruiz-Lombera, J. Mirapeix, J. M. Lopez-Higuera, L. Zeni. Proposal of Brillouin optical frequency-domain reflectometry (BOFDR). Opt. Express, 24, 29994-30001(2016).

    [19] D. Garus, K. Krebber, F. Schliep, T. Gogolla. Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis. Opt. Lett., 21, 1402-1404(1996).

    [20] Y. Mizuno, W. Zou, Z. He, K. Hotate. Proposal of Brillouin optical correlation-domain reflectometry. Opt. Express, 16, 12148-12153(2008).

    [21] K. Hotate, T. Hasegawa. Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation. IEICE Trans. Electron., E83-C, 405-412(2000).

    [22] A. Denisov, M. A. Soto, L. Thévenaz. Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration. Light Sci. Appl., 5, e16074(2016).

    [23] Y. H. Kim, K. Lee, K. Y. Song. Brillouin optical correlation domain analysis with more than 1 million effective sensing points based on differential measurement. Opt. Express, 23, 33241-33248(2015).

    [24] M. Ding, Y. Mizuno, K. Nakamura. Discriminative strain and temperature measurement using Brillouin scattering and fluorescence in erbium-doped optical fiber. Opt. Express, 22, 24706-24712(2014).

    [25] W. Zou, Z. He, K. Hotate. Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber. Opt. Express, 17, 1248-1255(2009).

    [26] G. Bolognini, A. Hartog. Raman-based fibre sensors: trends and applications. Opt. Fiber Technol., 19, 678-688(2013).

    [27] M. Wang, H. Wu, M. Tang, Z. Zhao, Y. Dang, C. Zhao, R. Liao, W. Chen, S. Fu, C. Yang, W. Tong, P. P. Shum, D. Liu. Few-mode fiber based Raman distributed temperature sensing. Opt. Express, 25, 4907-4916(2017).

    [28] D. Hwang, D.-J. Yoon, I.-B. Kwon, D.-C. Seo, Y. Chung. Novel auto-correction method in a fiber-optic distributed-temperature sensor using reflected anti-Stokes Raman scattering. Opt. Express, 18, 9747-9754(2010).

    [29] M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, S. M. Oak. Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals. Opt. Laser Technol., 65, 14-24(2015).

    [30] Y.-G. Han, T. V. A. Tran, S.-H. Kim, S. B. Lee. Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature. Opt. Lett., 30, 1282-1284(2005).

    [31] Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, A. Wang. A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings. IEEE Photon. Technol. Lett., 23, 70-72(2011).

    [32] B. A. Wilson, T. E. Blue. Quasi-distributed temperature sensing using type-II fiber Bragg gratings in sapphire optical fiber to temperatures up to 1300°C. IEEE Sens. J., 18, 8345-8351(2018).

    [33] G. Liang, J. Jiang, K. Liu, S. Wang, T. Xu, W. Chen, Z. Ma, Z. Ding, X. Zhang, Y. Zhang, T. Liu. Phase demodulation method based on a dual-identical-chirped-pulse and weak fiber Bragg gratings for quasi-distributed acoustic sensing. Photon. Res., 8, 1093-1099(2020).

    [34] M. A. Davis, A. D. Kersey. Simultaneous measurement of temperature and strain using fiber Bragg gratings and Brillouin scattering. Proc. SPIE, 2838, 114-123(1996).

    [35] I. Toccafondo, M. Taki, A. Signorini, F. Zaidi, T. Nannipieri, S. Faralli, F. D. Pasquale. Hybrid Raman/fiber Bragg grating sensor for distributed temperature and discrete dynamic strain measurements. Opt. Lett., 37, 4434-4436(2012).

    [36] M. G. Kuzyk. Polymer Fiber Optics: Materials, Physics, and Applications(2006).

    [37] O. Ziemann, J. Krauser, P. E. Zamzow, W. Daum. POF: Polymer Optical Fibers for Data Communication(2002).

    [38] K. Peters. Polymer optical fiber sensors—a review. Smart Mater. Struct., 20, 013002(2010).

    [39] J. Zubia, J. Arrue. Plastic optical fibers: an introduction to their technological processes and applications. Opt. Fiber Technol., 7, 101-140(2001).

    [40] I. R. Husdi, K. Nakamura, S. Ueha. Sensing characteristics of plastic optical fibres measured by optical time-domain reflectometry. Meas. Sci. Technol., 15, 1553-1559(2004).

    [41] K. Minakawa, N. Hayashi, Y. Mizuno, K. Nakamura. Thermal memory effect in polymer optical fibers. IEEE Photon. Technol. Lett., 27, 1394-1397(2015).

    [42] A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, O. Bang. Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors. Opt. Mater. Express, 6, 649-659(2016).

    [43] T. Kaino, M. Fujiki, S. Nara. Low‐loss polystyrene core-optical fibers. J. Appl. Phys., 52, 7061-7063(1981).

    [44] B. S. Rao, J. B. Puschett, K. Matyjaszewski. Preparation of pH sensors by covalent linkage of dye molecules to the surface of polystyrene optical fibers. J. Appl. Polym. Sci., 43, 925-928(1991).

    [45] Y. Koike, M. Asai. The future of plastic optical fiber. NPG Asia Mater., 1, 22-28(2009).

    [46] S. Kiesel, K. Peters, T. Hassan, M. Kowalsky. Large deformation in-fiber polymer optical fiber sensor. IEEE Photon. Technol. Lett., 20, 416-418(2008).

    [47] Z. Xie, J. Tao, Y. Lu, K. Lin, J. Yan, P. Wang, H. Ming. Polymer optical fiber SERS sensor with gold nanorods. Opt. Commun., 282, 439-442(2009).

    [48] K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large. Thermal response of Bragg gratings in PMMA microstructured optical fibers. Opt. Express, 15, 8844-8850(2007).

    [49] S. Binu, K. Kochunarayanan, V. P. M. Pillai, N. Chandrasekaran. PMMA (polymethyl methacrylate) fiber optic probe as a noncontact liquid level sensor. Microw. Opt. Technol. Lett., 52, 2114-2118(2010).

    [50] E. Alvarado-Méndez, R. Rojas-Laguna, J. A. Andrade-Lucio, D. Hernández-Cruz, R. A. Lessard, J. G. Aviña-Cervantes. Design and characterization of pH sensor based on sol–gel silica layer on plastic optical fiber. Sens. Actuators B Chem., 106, 518-522(2005).

    [51] M. Bottacini, N. Burani, M. Foroni, F. Poli, S. Selleri. All-plastic optical-fiber level sensor. Microw. Opt. Technol. Lett., 46, 520-522(2005).

    [52] P. G. Lye, M. Boerkamp, A. Ernest, D. W. Lamb. Investigating the sensitivity of PMMA optical fibres for use as an evanescent field absorption sensor in aqueous solutions. J. Phys. Conf. Ser., 15, 262-269(2005).

    [53] M. Silva-López, A. Fender, W. N. MacPherson, J. S. Barton, J. D. C. Jones, D. Zhao, H. Dobb, D. J. Webb, L. Zhang, I. Bennion. Strain and temperature sensitivity of a single-mode polymer optical fiber. Opt. Lett., 30, 3129-3131(2005).

    [54] H. Chibani, K. Dukenbayev, M. Mensi, S. K. Sekatskii, G. Dietler. Near-field scanning optical microscopy using polymethylmethacrylate optical fiber probes. Ultramicroscopy, 110, 211-215(2010).

    [55] D. Gallego, H. Lamela. High-sensitivity ultrasound interferometric single-mode polymer optical fiber sensors for biomedical applications. Opt. Lett., 34, 1807-1809(2009).

    [56] H. Lv, K. Zhang, X. Ma, W. Zhong, Y. Wang, X. Gao. Optimum design of the surface plasmon resonance sensor based on polymethyl methacrylate fiber. Phys. Open, 6, 100054(2021).

    [57] Z. Samavati, A. Samavati, A. F. Ismail, N. Yahya, M. A. Rahman, M. H. D. Othman. Effect of acetone/methanol ratio as a hybrid solvent on fabrication of polymethylmethacrylate optical fiber sensor. Opt. Laser Technol., 123, 105896(2020).

    [58] C. Lyu, Z. Liu, Z. Huo, C. Ge, X. Cheng, H.-Y. Tam. High-sensitivity, high-spatial-resolution distributed strain sensing based on a poly(methyl methacrylate) chirped fiber Bragg grating. Photon. Res., 8, 1134-1139(2020).

    [59] S. Muthusamy, J. Charles, B. Renganathan, A. R. Ganesan. Ternary polypyrrole/prussian blue/TiO2 nanocomposite wrapped poly-methyl methacrylate fiber optic gas sensor to detect volatile gas analytes. Optik, 230, 166289(2021).

    [60] S. Cao, Y. Shao, Y. Wang, T. Wu, L. Zhang, Y. Huang, F. Zhang, C. Liao, J. He, Y. Wang. Highly sensitive surface plasmon resonance biosensor based on a low-index polymer optical fiber. Opt. Express, 26, 3988-3994(2018).

    [61] D. Haroglu, N. Powell, A.-F. M. Seyam. The response of polymer optical fiber (POF) to cyclic loading for the application of a POF sensor for automotive seat occupancy sensing. J. Text. Inst., 108, 42-48(2017).

    [62] T. Kawa, G. Numata, H. Lee, N. Hayashi, Y. Mizuno, K. Nakamura. Temperature sensing based on multimodal interference in polymer optical fibers: room-temperature sensitivity enhancement by annealing. Jpn. J. Appl. Phys., 56, 078002(2017).

    [63] Y. Mizuno, S. Hagiwara, N. Matsutani, K. Noda, H. Lee, K. Nakamura. Observation of multimodal interference in millimeter-long polymer optical fibers. IEICE Electron. Express, 16, 20190135(2019).

    [64] S. Shimada, H. Lee, M. Shizuka, H. Tanaka, N. Hayashi, Y. Matsumoto, Y. Tanaka, H. Nakamura, Y. Mizuno, K. Nakamura. Refractive index sensing using ultrasonically crushed polymer optical fibers. Appl. Phys. Express, 10, 012201(2017).

    [65] Y. Mizuno, H. Lee, S. Shimada, Y. Matsumoto, Y. Tanaka, H. Nakamura, K. Nakamura. Pilot demonstration of refractive index sensing using polymer optical fiber crushed with slotted screwdriver. IEICE Electron. Express, 14, 20170962(2017).

    [66] G. Numata, N. Hayashi, Y. Mizuno, K. Nakamura. Ultra-sensitive strain and temperature sensing based on modal interference in perfluorinated polymer optical fibers. IEEE Photon. J., 6, 6802306(2014).

    [67] H. Ujihara, N. Hayashi, K. Minakawa, Y. Mizuno, K. Nakamura. Polymer optical fiber tapering without the use of external heat source and its application to refractive index sensing. Appl. Phys. Express, 8, 072501(2015).

    [68] Y. Mizuno, G. Numata, T. Kawa, H. Lee, N. Hayashi, K. Nakamura. Multimodal interference in perfluorinated polymer optical fibers: application to ultrasensitive strain and temperature sensing. IEICE Trans. Electron., E101-C, 602-610(2018).

    [69] A. Leal-Junior, A. Frizera, M. J. Pontes, P. Antunes, N. Alberto, M. F. Domingues, H. Lee, R. Ishikawa, Y. Mizuno, K. Nakamura, P. André, C. Marques. Dynamic mechanical analysis on fused polymer optical fibers: towards sensor applications. Opt. Lett., 43, 1754-1757(2018).

    [70] A. Leal-Junior, A. Frizera, H. Lee, Y. Mizuno, K. Nakamura, T. Paixão, C. Leitão, M. F. Domingues, N. Alberto, P. Antunes, P. André, C. Marques, M. J. Pontes. Strain, temperature, moisture, and transverse force sensing using fused polymer optical fibers. Opt. Express, 26, 12939-12947(2018).

    [71] A. Leal-Junior, A. Frizera, H. Lee, Y. Mizuno, K. Nakamura, C. Leitão, M. F. Domingues, N. Alberto, P. Antunes, P. André, C. Marques, M. J. Pontes. Design and characterization of a curvature sensor using fused polymer optical fibers. Opt. Lett., 43, 2539-2542(2018).

    [72] M. K. Barnoski, S. M. Jensen. Fiber waveguides—a novel technique for investigating attenuation characteristics. Appl. Opt., 15, 2112-2115(1976).

    [73] P. Eraerds, M. Legre, J. Zhang, H. Zbinden, N. Gisin. Photon counting OTDR: advantages and limitations. J. Lightwave Technol., 28, 952-964(2010).

    [74] S. Liehr, N. Nöther, K. Krebber. Incoherent optical frequency domain reflectometry and distributed strain detection in polymer optical fibers. Meas. Sci. Technol., 21, 017001(2010).

    [75] S. Liehr, M. Wendt, K. Krebber. Distributed strain measurement in perfluorinated polymer optical fibres using optical frequency domain reflectometry. Meas. Sci. Technol., 21, 094023(2010).

    [76] S. Liehr. Fibre Optic Sensing Techniques Based on Incoherent Optical Frequency Domain Reflectometry, 125(2015).

    [77] S. Liehr, P. Lenke, M. Wendt, K. Krebber, M. Seeger, E. Thiele, H. Metschies, B. Gebreselassie, J. C. Munich. Polymer optical fiber sensors for distributed strain measurement and application in structural health monitoring. IEEE Sens. J., 9, 1330-1338(2009).

    [78] K. Nakamura, I. R. Husdi, S. Ueha. A distributed strain sensor with the memory effect based on the POF OTDR. Proc. SPIE, 5855, 807-810(2005).

    [79] S. Liehr, P. Lenke, K. Krebber, M. Seeger, E. Thiele, H. Metschies, B. Gebreselassie, J. C. Münich, L. Stempniewski. Distributed strain measurement with polymer optical fibers integrated into multifunctional geotextiles. Proc. SPIE, 7003, 700302(2008).

    [80] T. Gordelier, P. R. Thies, G. Rinaldi, L. Johanning. Investigating polymer fibre optics for condition monitoring of synthetic mooring lines. J. Mar. Sci. Eng., 8, 103(2020).

    [81] P. Lenke, S. Liehr, K. Krebber, F. Weigand, E. Thiele. Distributed strain measurement with polymer optical fiber integrated in technical textiles using the optical time domain reflectometry technique. 16th International Conference on Plastic Optical Fibers, 21-24(2007).

    [82] T. Fukumoto, K. Nakamura, S. Ueha. A POF-based distributed strain sensor for detecting deformation of wooden structures. Proc. SPIE, 7004, 700469(2008).

    [83] R. Suresh, K. S. C. Kuang. Crack detection of a tensile steel specimen using plastic optical fibre sensor. Int. J. Struct. Eng., 7, 367-377(2016).

    [84] S. Liehr, P. Lenke, M. Wendt, K. Krebber, R. Gloetzl, J. Schneider-Gloetzl, L. Gabino, L. Krywult. Distributed polymer optical fiber sensors in geotextiles for monitoring of earthwork structures. 4th International Conference Structural Health Monitoring of Intelligent Infrastructure (SHMII-4)(2009).

    [85] S. Liehr, M. Wendt, J. C. Münich, L. Stempniewski, H. Metschies. Distributed polymer optical fiber sensors integrated in technical textiles for monitoring of masonry structures. 4th International Conference Structural Health Monitoring of Intelligent Infrastructure (SHMII-4)(2009).

    [86] P. Lenke, S. Liehr, K. Krebber. Improvements of the distributed strain sensor based on optical time domain reflectometry measurement in polymer optical fibers. 17th International Conference on Plastic Optical Fibers(2008).

    [87] S. Dengler, N. Schmidt, M. Luber, J. Fischer, O. Ziemann, R. Engelbrecht, H. Hangen. Influence of temporal strain evolution on distributed strain sensing with OTDR in polymer optical fibers. SMSI 2020—Sensors and Instrumentation, 75-76(2020).

    [88] S. Liehr, M. Breithaupt, K. Krebber. Distributed humidity sensing in PMMA optical fibers at 500  nm and 650  nm wavelengths. Sensors, 17, 738(2017).

    [89] P. Lenke, M. Wendt, S. Liehr, K. Krebber. Distributed humidity sensing based on Rayleigh scattering in polymer optical fibers. Proc. SPIE, 7653, 765364(2010).

    [90] S. Liehr, J. Burgmeier, K. Krebber, W. Schade. Femtosecond laser structuring of polymer optical fibers for backscatter sensing. J. Lightwave Technol., 31, 1418-1425(2013).

    [91] P. Stajanca, K. Krebber. Radiation-induced attenuation of perfluorinated polymer optical fibers for radiation monitoring. Sensors, 17, 1959(2017).

    [92] T. Y. P. Yuen, C.-A. Tsai, T. Deb, Y.-H. Lin, J. Nyienyi, K. T. Wan, Q. Huang. Large structural shear deformation and failure monitoring using bend losses in polymer optical fibre. Sensors, 20, 195(2020).

    [93] J. Witt, F. Narbonneau, M. Schukar, K. Krebber, J. D. Jonckheere, M. Jeanne, D. Kinet, B. Paquet, A. Depre, L. T. D’Angelo, T. Thiel, R. Logier. Medical textiles with embedded fiber optic sensors for monitoring of respiratory movement. IEEE Sens. J., 12, 246-254(2012).

    [94] C. Saunders, P. J. Scully. Distributed plastic optical fibre measurement of pH using a photon counting OTDR. J. Phys. Conf. Ser., 15, 61-66(2005).

    [95] P. Stajanca, L. Mihai, D. Sporea, D. Negut, H. Sturm, M. Schukar, K. Krebber. Impacts of gamma irradiation on CYTOP plastic optical fibres. 25th International Conference on Plastic Optical Fibers(2016).

    [96] S. T. Kreger, A. K. Sang, D. K. Gifford, M. E. Froggatt. Distributed strain and temperature sensing in plastic optical fiber using Rayleigh scatter. Proc. SPIE, 7316, 73160A(2009).

    [97] S. Liehr, P. Lenke, M. Wendt, K. Krebber. Perfluorinated graded-index polymer optical fibers for distributed measurement of strain. 17th International Conference on Plastic Optical Fibers(2008).

    [98] S. Liehr, K. Krebber. Application of quasi-distributed and dynamic length and power change measurement using optical frequency domain reflectometry. IEEE Sens. J., 12, 237-245(2012).

    [99] P. Stajanca, L. Mihai, D. Sporea, D. Neguţ, H. Sturm, M. Schukar, K. Krebber. Effects of gamma radiation on perfluorinated polymer optical fibers. Opt. Mater., 58, 226-233(2016).

    [100] S. O’Keeffe, E. Lewis. Polymer optical fibre for in situ monitoring of gamma radiation processes. Int. J. Smart Sens. Intell. Syst., 2, 490-502(2009).

    [101] O. J. Olusoji, W. Kam, S. O’Keeffe. Radiotherapy dosimetry based on perfluorinated polymer optical fibers. Proc. SPIE, 11354, 113541W(2020).

    [102] Y. Mizuno, Z. He, K. Hotate. Distributed strain measurement using a tellurite glass fiber with Brillouin optical correlation-domain reflectometry. Opt. Commun., 283, 2438-2441(2010).

    [103] Y. Mizuno, Z. He, K. Hotate. Dependence of the Brillouin frequency shift on temperature in a tellurite glass fiber and a bismuth-oxide highly-nonlinear fiber. Appl. Phys. Express, 2, 112402(2009).

    [104] K. S. Abedin. Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber. Opt. Express, 13, 10266-10271(2005).

    [105] K. Y. Song, K. S. Abedin, K. Hotate, M. G. Herráez, L. Thévenaz. Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber. Opt. Express, 14, 5860-5865(2006).

    [106] J. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto. Experimental comparison of a Kerr nonlinearity figure of merit including the stimulated Brillouin scattering threshold for state-of-the-art nonlinear optical fibers. Opt. Lett., 30, 1698-1700(2005).

    [107] L. Zou, X. Bao, S. Afshar, L. Chen. Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber. Opt. Lett., 29, 1485-1487(2004).

    [108] M. Ding, N. Hayashi, Y. Mizuno, K. Nakamura. Brillouin gain spectrum dependences on temperature and strain in erbium-doped optical fibers with different erbium concentrations. Appl. Phys. Lett., 102, 191906(2013).

    [109] Y. Mizuno, N. Hayashi, H. Tanaka, Y. Wada, K. Nakamura. Brillouin scattering in multi-core optical fibers for sensing applications. Sci. Rep., 5, 11388(2015).

    [110] Z. Zhao, M. A. Soto, M. Tang, L. Thévenaz. Distributed shape sensing using Brillouin scattering in multi-core fibers. Opt. Express, 24, 25211-25223(2016).

    [111] Y. Mizuno, K. Nakamura. Experimental study of Brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength. Appl. Phys. Lett., 97, 021103(2010).

    [112] G. P. Agrawal. Nonlinear Fiber Optics(1995).

    [113] Y. Mizuno, K. Nakamura. Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing. Opt. Lett., 35, 3985-3987(2010).

    [114] N. Hayashi, Y. Mizuno, K. Nakamura. Brillouin gain spectrum dependence on large strain in perfluorinated graded-index polymer optical fiber. Opt. Express, 20, 21101-21106(2012).

    [115] N. Hayashi, K. Minakawa, Y. Mizuno, K. Nakamura. Brillouin frequency shift hopping in polymer optical fiber. Appl. Phys. Lett., 105, 091113(2014).

    [116] Y. Mizuno, N. Matsutani, N. Hayashi, H. Lee, M. Tahara, H. Hosoda, K. Nakamura. Brillouin characterization of slimmed polymer optical fibers for strain sensing with extremely wide dynamic range. Opt. Express, 26, 28030-28037(2018).

    [117] K. Minakawa, Y. Mizuno, K. Nakamura. Cross effect of strain and temperature on Brillouin frequency shift in polymer optical fibers. J. Lightwave Technol., 35, 2481-2486(2017).

    [118] A. Schreier, A. Wosniok, S. Liehr, K. Krebber. Humidity-induced Brillouin frequency shift in perfluorinated polymer optical fibers. Opt. Express, 26, 22307-22314(2018).

    [119] Y. Mizuno, H. Lee, N. Hayashi, K. Nakamura. Hydrostatic pressure dependence of Brillouin frequency shift in polymer optical fibers. Appl. Phys. Express, 11, 012502(2018).

    [120] Y. Dong, P. Xu, H. Zhang, Z. Lu, L. Chen, X. Bao. Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis. Opt. Express, 22, 26510-26516(2014).

    [121] A. Minardo, R. Bernini, L. Zeni. Distributed temperature sensing in polymer optical fiber by BOFDA. IEEE Photon. Technol. Lett., 26, 387-390(2014).

    [122] Y. Mizuno, Z. He, K. Hotate. One-end-access high-speed distributed strain measurement with 13-mm spatial resolution based on Brillouin optical correlation-domain reflectometry. IEEE Photon. Technol. Lett., 21, 474-476(2009).

    [123] Y. Mizuno, W. Zou, Z. He, K. Hotate. Operation of Brillouin optical correlation-domain reflectometry: theoretical analysis and experimental validation. J. Lightwave Technol., 28, 3300-3306(2010).

    [124] Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, K. Nakamura. Ultrahigh-speed distributed Brillouin reflectometry. Light Sci. Appl., 5, e16184(2016).

    [125] Y. Mizuno, H. Lee, K. Nakamura. Recent advances in Brillouin optical correlation-domain reflectometry. Appl. Sci., 8, 1845(2018).

    [126] N. Hayashi, Y. Mizuno, K. Nakamura. Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers. J. Lightwave Technol., 32, 3999-4003(2014).

    [127] N. Hayashi, Y. Mizuno, K. Nakamura. Simplified Brillouin optical correlation-domain reflectometry using polymer optical fiber. IEEE Photon. J., 7, 6800407(2015).

    [128] Y. Mizuno, H. Lee, N. Hayashi, K. Nakamura. Noise suppression technique for distributed Brillouin sensing with polymer optical fibers. Opt. Lett., 44, 2097-2100(2019).

    [129] N. Hayashi, K. Minakawa, Y. Mizuno, K. Nakamura. Polarization scrambling in Brillouin optical correlation-domain reflectometry using polymer fibers. Appl. Phys. Express, 8, 062501(2015).

    [130] H. Lee, N. Hayashi, Y. Mizuno, K. Nakamura. Slope-assisted Brillouin optical correlation-domain reflectometry using polymer optical fibers with high propagation loss. J. Lightwave Technol., 35, 2306-2310(2017).

    [131] A. Theodosiou, K. Kalli. Recent trends and advances of fibre Bragg grating sensors in CYTOP polymer optical fibres. Opt. Fiber Technol., 54, 102079(2020).

    [132] G. Giaretta, W. White, M. Wegmuller, T. Onishi. High-speed (11  Gbit/s) data transmission using perfluorinated graded-index polymer optical fibers for short interconnects (<100  m). IEEE Photon. Technol. Lett., 12, 347-349(2000).

    [133] C. Lethien, C. Loyez, J.-P. Vilcot, N. Rolland, P. A. Rolland. Exploit the bandwidth capacities of the perfluorinated graded index polymer optical fiber for multi-services distribution. Polymers, 3, 1006-1028(2011).

    [134] A. Theodosiou, A. Lacraz, A. Stassis, C. Koutsides, M. Komodromos, K. Kalli. Plane-by-plane femtosecond laser inscription method for single-peak Bragg gratings in multimode CYTOP polymer optical fiber. J. Lightwave Technol., 35, 5404-5410(2017).

    [135] A. Theodosiou, M. Polis, A. Lacraz, M. Komodromos, A. Stassis, K. Kalli. Comparative study of multimode CYTOP graded index and single-mode silica fibre Bragg grating array for the mode shape capturing of a free-free metal beam. Proc. SPIE, 9886, 98860O(2016).

    [136] R. Min, B. Ortega, A. Leal-Junior, C. Marques. Fabrication and characterization of Bragg grating in CYTOP POF at 600-nm wavelength. IEEE Sens. Lett., 2, 5000804(2018).

    [137] M. Koerdt, S. Kibben, O. Bendig, S. Chandrashekhar, J. Hesselbach, C. Brauner, A. S. Herrmann, F. Vollertsen, L. Kroll. Fabrication and characterization of Bragg gratings in perfluorinated polymer optical fibers and their embedding in composites. Mechatronics, 34, 137-146(2016).

    [138] R. Ishikawa, H. Lee, A. Lacraz, A. Theodosiou, K. Kalli, Y. Mizuno, K. Nakamura. Pressure dependence of fiber Bragg grating inscribed in perfluorinated polymer fiber. IEEE Photon. Technol. Lett., 29, 2167-2170(2017).

    [139] A. Theodosiou, M. Komodromos, K. Kalli. Carbon cantilever beam health inspection using a polymer fibre Bragg grating array. J. Lightwave Technol., 36, 986-992(2017).

    [140] A. Leal-Junior, A. Theodosiou, C. Marques, M. J. Pontes, K. Kalli, A. Frizera. Thermal treatments and compensation techniques for the improved response of FBG sensors in POFs. J. Lightwave Technol., 36, 3611-3617(2018).

    [141] A. Theodosiou, X. Hu, C. Caucheteur, K. Kalli. Bragg gratings and Fabry-Perot cavities in low-loss multimode CYTOP polymer fiber. IEEE Photon. Technol. Lett., 30, 857-860(2018).

    [142] Y. Mizuno, R. Ishikawa, H. Lee, A. Theodosiou, K. Kalli, K. Nakamura. Potential of discriminative sensing of strain and temperature using perfluorinated polymer FBG. IEEE Sens. J., 19, 4458-4462(2019).

    [143] Y. Mizuno, T. Ma, R. Ishikawa, H. Lee, A. Theodosiou, K. Kalli, K. Nakamura. Twist dependencies of strain and temperature sensitivities of perfluorinated graded-index polymer optical fiber Bragg gratings. Appl. Phys. Express, 12, 082007(2019).

    [144] Z. Du, S. Deng, Y. Bei, Q. Huang, B. Wang, J. Huang, G. Yu. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—a review. J. Hazard. Mater., 274, 443-454(2014).

    [145] G. Woyessa, A. Fasano, C. Markos, H. K. Rasmussen, O. Bang. Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing. IEEE Photon. Technol. Lett., 29, 575-578(2017).

    [146] G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. R. Rasmussen, O. Bang. Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing. Opt. Lett., 42, 1161-1164(2017).

    [147] A. Pospori, C. Marques, G. Sagias, H. Lamela-Rivera, D. J. Webb. Novel thermal annealing methodology for permanent tuning polymer optical fiber Bragg gratings to longer wavelengths. Opt. Express, 26, 1411-1421(2018).

    [148] M. Liang, X. Fang, G. Wu, G. Xue, H. Li. A fiber Bragg grating pressure sensor with temperature compensation based on diaphragm-cantilever structure. Optik, 145, 503-512(2017).

    [149] K. Kalli, A. Theodosiou, A. Lacraz. Femtosecond laser inscribed Bragg grating arrays in long lengths of polymer optical fibres: a route to practical sensing with POF. Electron. Lett., 52, 1626-1627(2016).

    [150] A. G. Leal-Junior, A. Frizera, A. Theodosiou, C. Diaz, M. Jimenez, R. Min, M. J. Pontes, K. Kalli, C. Marques. Plane-by-plane written, low-loss polymer optical fiber Bragg grating arrays for multiparameter sensing in a smart walker. IEEE Sens. J., 19, 9221-9228(2019).

    [151] A. Leal-Junior, A. Theodosiou, C. Díaz, C. Marques, M. J. Pontes, K. Kalli, A. Frizera. Fiber Bragg gratings in CYTOP fibers embedded in a 3D-printed flexible support for assessment of human–robot interaction forces. Materials, 11, 2305(2018).

    [152] A. G. Leal-Junior, A. Theodosiou, R. Min, J. Casa, C. Diaz, W. M. D. Santos, M. J. Pontes, A. A. G. Siqueira, C. Marques, K. Kalli, A. Frizera. Quasi-distributed torque and displacement sensing on a series elastic actuator’s spring using FBG arrays inscribed in CYTOP fibers. IEEE Sens. J., 19, 4054-4061(2019).

    [153] D. Vilarinho, A. Theodosiou, M. F. Domingues, P. Andre, K. Kalli, P. Antunes, C. Marques. Foot plantar pressure monitoring with CYTOP Bragg gratings sensing system. 11th International Joint Conference on Biomedical Engineering Systems and Technologies, 25-29(2018).

    [154] M. Carrozza, A. G. Leal-Junior, A. Theodosiou, S. Micera, A. Frizera, J. Pons, M. F. Domingues, C. Leitao, K. Kalli, P. Andre, P. Antunes, M. J. Pontes, C. Marques. Polymer optical fiber sensors approaches for insole instrumentation. Wearable Robotics: Challenges and Trends. WeRob 2018, 22, 470-474(2019).

    [155] D. Vilarinho, A. Theodosiou, C. Leitão, A. G. Leal-Junior, M. Domingues, K. Kalli, P. Andre, P. Antunes, C. Marques. POFBG-embedded cork insole for plantar pressure monitoring. Sensors, 17, 2924(2017).

    [156] A. Abdelouhab, D. Dias, N. Freitag. Numerical analysis of the behaviour of mechanically stabilized earth walls reinforced with different types of strips. Geotex. Geomemb., 29, 116-129(2011).

    [157] H. K. Rasmussen, A. Fasano, P. Stajanca, G. Woyessa, M. Schukar, O. Bang. Mechanical characterization of drawn Zeonex, Topas, polycarbonate and PMMA microstructured polymer optical fibres. Opt. Mater. Express, 8, 3600-3614(2018).

    [158] G. Woyessa, H. K. Rasmussen, O. Bang. Zeonex—a route towards low loss humidity insensitive single-mode step-index polymer optical fibre. Opt. Fiber Technol., 57, 102231(2020).

    [159] W. Yuan, A. Stefani, O. Bang. Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors. IEEE Photon. Technol. Lett., 24, 401-403(2012).

    [160] G. Rajan, M. Y. M. Noor, E. Ambikairajah, G.-D. Peng. Inscription of multiple Bragg gratings in a single-mode polymer optical fiber using a single phase mask and its analysis. IEEE Sens. J., 14, 2384-2388(2014).

    [161] I. P. Johnson, D. J. Webb, K. Kalli. Utilisation of thermal annealing to record multiplexed FBG sensors in multimode microstructured polymer optical fibre. Proc. SPIE, 7753, 77536T(2011).

    [162] C. Marques, G.-D. Peng, D. J. Webb. Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings. Opt. Express, 23, 6058-6072(2015).

    [163] C. Marques, A. Pospori, D. Saez-Rodriguez, K. Nielsen, O. Bang, D. J. Webb. Aviation fuel gauging sensor utilizing multiple diaphragm sensors incorporating polymer optical fiber Bragg gratings. IEEE Sens. J., 16, 6122-6129(2016).

    Yosuke Mizuno, Antreas Theodosiou, Kyriacos Kalli, Sascha Liehr, Heeyoung Lee, Kentaro Nakamura. Distributed polymer optical fiber sensors: a review and outlook[J]. Photonics Research, 2021, 9(9): 1719
    Download Citation