[1] Yubi Yao, Shaozhong Zhen, Yang Yang, . Progress and prospects on solar energy resoure evaluation and utilization efficiency in china. Acta energiae solaris sinic, 43, 524-535(2022).
[2] Cun Xie, Qiang Wang. Spatio-temporal characteristics of new energy industry innovation capability and impact factors analysis in China. Geographical Research, 41, 130-148(2022).
[3] Zheyang Zhang, Xing Ju, Xingyu Pan, . Photovoltaic/concentrated solar power hybrid technology and its commercial application. Power Generation Technology, 41, 220-230(2020).
[4] M T Islam, N Huda, A B Abdullah, et al. A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends. Renewable and Sustainable Energy Reviews, 91(4), 987-1018(2018).
[5] O Achkari, Fadar A El. Latest developments on TES and CSP technologies–Energy and environmental issues, applications and research trends. Applied Thermal Engineering, 167, 114806(2020).
[6] A G Fernández, J Gomez-vidal, E Oró, et al. Mainstreaming commercial CSP systems: A technology review. Renewable Energy, 140(3), 152-176(2019).
[7] Yeguang Hu, Cheng Zhang, Chaoyong Zhou, . Current status and prospect analysis of heat collectiontechnology of solar thermal power. Science Technology and Engineering, 21, 3421-3427(2021).
[8] Linggang Kong, Xinglong Chen, Zhiyong Zhang, . Research status and development trend of linear fresnel concentrating solar power technology. Journal of Lanzhou Jiaotong University, 39, 51-57(2020).
[9] Ruidong Wang, Jun Ma, Chenglong Wang, . Progress of linear Fresnel concentrator heat collection system. Infrared and Laser Engineering, 50, 20210452(2021).
[11] A Bonk, S Sau, N Uranga, et al. Advanced heat transfer fluids for direct molten salt line-focusing CSP plants. Progress in Energy and Combustion Science, 67, 69-87(2018).
[12] Zhiyong Zhang, Jun Ma, Chenglong Wang, . Air tube preheating model of linear Fresnel systems and application of variable duty ratio following control. Scientia Sinica Techologica, 51, 315-323(2021).
[13] Häberle A, Zahler C, Lerchenmüller H, et al. The solarmundo line focussing fresnel collect. optical thermal perfmance cost calculations[C]Proceedings of the 2002 SolarPACES International Symposium, 2002.
[14] M A Moghimi, K J Craig, J P Meyer. A novel computational approach to combine the optical and thermal modelling of Linear Fresnel Collectors using the finite volume method. Solar Energy, 116, 407-427(2015).
[15] M Eck, R Uhlig, M Mertins, et al. Thermal load of direct steam-generating absorber tubes with large diameter in horizontal linear Fresnel collectors. Heat Transfer Engineering, 28, 42-48(2007).
[16] J Lu, Q Yuan, J Ding, et al. Experimental studies on nonuniform heat transfer and deformation performances for trough solar receiver. Applied Thermal Engineering, 109, 497-506(2016).
[17] Y Qiu, M J Li, K Wang, et al. Aiming strategy optimization for uniform flux distribution in the receiver of a linear Fresnel solar reflector using a multi-objective genetic algorithm. Applied Energy, 205, 1394-1407(2017).
[18] Chenglong Wang, Jun Ma, Duowang Fan. Arrangement and optimization of mirror field for linear Fresnel reflector system. Optics and Precision Engineering, 23, 78-82(2015).
[19] W T Welford, R Winston, D C Sinclair. The optics of nonimaging concentrators: Light and solar energy. Physics Today, 33, 56-57(1980).
[20] Chenglong Wang, Jun Ma, Duowang Fan, . Simulation study of a CPC for linear Fresnel reflector system. Infrared and Laser Engineering, 44, 556-560(2015).
[21] J Ma, C L Wang, Y Zhou, et al. Optimized design of a linear fresnel collector with a compound parabolic secondary reflector. Renewable Energy, 171, 141-148(2021).