• Opto-Electronic Advances
  • Vol. 1, Issue 7, 180012 (2018)
Guiyuan Cao, Xiaosong Gan, Han Lin, and Baohua Jia*
Author Affiliations
  • Centre for Micro-Photonics, Faculty of Engineering, Science and Technology, Swinburne University of Technology, John Street, Hawthorn, VIC 3122, Australia
  • show less
    DOI: 10.29026/oea.2018.180012 Cite this Article
    Guiyuan Cao, Xiaosong Gan, Han Lin, Baohua Jia. An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory[J]. Opto-Electronic Advances, 2018, 1(7): 180012 Copy Citation Text show less
    References

    [1] Mahajan V N. Aberration Theory Made Simple (SPIE Optical Engineering Press, Bellingham, WA, 1991).

    [2] Lu D, Lin Z W. Hyperlenses and metalenses for far-field super-resolution imaging. Nat Commun 3, 1205 (2012).

    [3] Liu Z W, Steele J M, Srituravanich W, Pikus Y, Sun C et al. Focusing surface plasmons with a plasmonic lens. Nano Lett 5, 1726–1729 (2005).

    [4] Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    [5] Verslegers L, Catrysse P B, Yu Z, White J S, Barnard E S et al. Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett 9, 235–238 (2009).

    [6] Yu N F, Capasso F. Flat optics with designer metasurfaces. Nat Mater 13, 139–150 (2014).

    [7] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    [8] Aieta F, Genevet P, Kats M A, Yu N F, Blanchard R et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 12, 4932–4936 (2012).

    [9] Rogers E T F, Lindberg J, Roy T, Savo S, Chad J E et al. A super-oscillatory lens optical microscope for subwavelength imaging. Nat Mater 11, 432–435 (2012).

    [10] Qin F, Huang K, Wu J F, Teng J H, Qiu C W et al. A supercritical lens optical label-free microscopy: Sub-diffraction resolution and ultra-long working distance. Adv Mater 29, 1602721 (2017).

    [11] Zheng X R, Jia B H, Lin H, Qiu L, Li D et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat Commun 6, 8433 (2015).

    [12] Gao H W, Hyun J K, Lee M H, Yang J C, Lauhon L J et al. Broadband plasmonic microlenses based on patches of nanoholes. Nano Lett 10, 4111–4116 (2010).

    [13] Wang Y X, Yun W B, Jacobsen C. Achromatic Fresnel optics for wideband extreme-ultraviolet and X-ray imaging. Nature 424, 50–53 (2003).

    [14] Wang S C, Ouyang X Y, Feng Z W, Gao Y Y, Gu M et al. Diffractive photonic applications mediated by laser reduced graphene oxides. Opto-Electron Adv 1, 170002 (2018).

    [15] Zheng X R, Lin H, Yang T S, Jia B H. Laser trimming of graphene oxide for functional photonic applications. J Phys D: Appl Phys 50, 074003 (2017).

    [16] Ojeda-Castaneda J, Gómez-Reino C. Selected Papers on Zone Plates (SPIE Press, Bellingham, WA, 1996).

    [17] Cao Q, Jahns J. Modified Fresnel zone plates that produce sharp Gaussian focal spots. J Opt Soc Am A 20, 1576–1581 (2003).

    [18] Yu Y H, Tian Z N, Jiang T, Niu L G, Gao B R. Fabrication of large-scale multilevel phase-type Fresnel zone plate arrays by femtosecond laser direct writing. Opt Commun 362, 69–72 (2016).

    [19] Wang X K, Xie Z W, Sun W F, Feng S F, Cui Y et al. Focusing and imaging of a virtual all-optical tunable terahertz Fresnel zone plate. Opt Lett 38, 4731–4734 (2013).

    [20] Saavedra G, Furlan W D, Monsoriu J A. Fractal zone plates. Opt Lett 28, 971–973 (2003).

    [21] Solak H H, David C, Gobrecht J. Fabrication of high-resolution zone plates with wideband extreme-ultraviolet holography. Appl Phys Lett 85, 2700–2702 (2004).

    [22] Kunz K S, Luebbers R J. The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Roca Raton, FL, 1993).

    [23] Taflove A. Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures. Wave Motion 10, 547–582 (1988).

    [24] Zhang H R, Zhang F C, Liang Y, Huang X G, Jia B H. Diodelike asymmetric transmission in hybrid plasmonic waveguides via breaking polarization symmetry. J Phys D: Appl Phys 50, 165104 (2017).

    [25] Byrnes S J, Lenef A, Aieta F, Capasso F. Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Opt Express 24, 5110–5124 (2016).

    [26] Zhuang Z F, Yu F H. Optimization design of hybrid Fresnel-based concentrator for generating uniformity irradiance with the broad solar spectrum. Opt Laser Technol 60, 27–33 (2014).

    [27] Huang K, Shi P, Kang X L, Zhang X B, Li Y P. Design of DOE for generating a needle of a strong longitudinally polarized field. Opt Lett 35, 965–967(2010).

    [28] Gu M. Advanced Optical Imaging Theory (Springer, Berlin Heidelberg, 2000).

    [29] Goodman J W. Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

    [30] Hecht E. Optics 4th ed (Addison-Wesley, Boston, 2002).

    [31] Zheng X R, Jia B H, Chen X, Gu M. In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices. Adv Mater 26, 2699–2703 (2014).

    [32] Li X P, Zhang Q M, Chen X, Gu M. Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording. Sci Rep 3, 2819 (2013).

    [33] Yang T S, Lin H, Jia B H. Two-dimensional material functional devices enabled by direct laser fabrication. Front Optoelectron 11, 2–22 (2018).

    Guiyuan Cao, Xiaosong Gan, Han Lin, Baohua Jia. An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory[J]. Opto-Electronic Advances, 2018, 1(7): 180012
    Download Citation