• Journal of Innovative Optical Health Sciences
  • Vol. 10, Issue 4, 1730007 (2017)
Yongsheng Cui, Chang Yuan, and Zhong Ji*
Author Affiliations
  • MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
  • show less
    DOI: 10.1142/s1793545817300075 Cite this Article
    Yongsheng Cui, Chang Yuan, Zhong Ji. A review of microwave-induced thermoacoustic imaging: Excitation source, data acquisition system and biomedical applications[J]. Journal of Innovative Optical Health Sciences, 2017, 10(4): 1730007 Copy Citation Text show less
    References

    [1] R. A. Kruger, D. R. Reinecke, G. A. Kruger, “Thermoacoustic computed tomography — Technical considerations,” Med. Phys. 26, 1832–1837 (1999).

    [2] R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, G. A. Kruger, “Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434 MHz — Feasibility study,” Radiology 216, 279–283 (2000).

    [3] R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, K. D. Miller, “Thermoacoustic molecular imaging of small animals,” Mol. Imag. 2, 113–123 (2003).

    [4] L. V. Wang, X. Zhao, H. Sun, G. Ku, “Microwave-induced acoustic imaging of biological tissues,” Rev. Sci. Instrum. 70, 3744–3748 (1999).

    [5] G. Ku, L. V. Wang, “Scanning thermoacoustic tomography in biological tissue,” Med. Phys. 27, 1195–1202 (2000).

    [6] D. Feng, Y. Xu, G. Ku, L. V. Wang, “Microwave-induced thermoacoustic tomography: Reconstruction by synthetic aperture,” Med. Phys. 28, 2427–2431 (2001).

    [7] G. Ku, L. V. Wang, “Scanning microwave-induced thermoacoustic tomography: Signal, resolution, and contrast,” Med. Phys. 28, 4–10 (2001).

    [8] M. Xu, G. Ku, L. V. Wang, “Microwave-induced thermoacoustic tomography using multi-sector scanning,” Med. Phys. 28, 1958–1963 (2001).

    [9] Y. Xu, L. V. Wang, “Signal processing in scanning thermoacoustic tomography in biological tissues,” Med. Phys. 28, 1519–1524 (2001).

    [10] M. Xu, L. V. Wang, “Pulsed-microwave-induced thermoacoustic tomography: Filtered backprojection in a circular measurement configuration,” Med. Phys. 29, 1661–1669 (2002).

    [11] M. Xu, L. V. Wang, “Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE Trans. Med. Imag. 21, 814–822 (2002).

    [12] Y. Xu, D. Feng, L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. I. Planar geometry,” IEEE Trans. Med. Imag. 21, 823–828 (2002).

    [13] Y. Xu, M. Xu, L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. II. Cylindrical geometry,” IEEE Trans. Med. Imag. 21, 829–833 (2002).

    [14] M. Xu, Y. Xu, L. V. Wang, “Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries,” IEEE Trans. Biomed. Eng. 50, 1086–1099 (2003).

    [15] Y. Xu, L. V. Wang, “Effects of acoustic heterogeneity in breast thermoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1134–1146 (2003).

    [16] Y. Xu, L. V. Wang, G. Ambartsoumian, P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724–733 (2004).

    [17] G. Ku, B. D. Fornage, X. Jin, M. Xu, K. K. Hunt, L. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. Treat. 4, 559–565 (2005).

    [18] X. Jin, Y. Xu, L. V. Wang, Y. R. Fang, C. I. Zanelli, S. M. Howard, “Imaging of high-intensity focused ultrasound-induced lesions in soft biological tissue using thermoacoustic tomography,” Med. Phys. 32, 5–11 (2005).

    [19] X. Jin, L. V. Wang, “Thermoacoustic tomography with correction for acoustic speed variations,” Phys. Med. Biol. 51, 6437–6488 (2006).

    [20] Y. Xu, L. V. Wang, “Rhesus monkey brain imaging through intact skull with thermoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 542–548 (2006).

    [21] X. Jin, C. Li, L. V. Wang, “Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography,” Med. Phys. 35, 3205–3214 (2008).

    [22] C. Li, M. Pramanik, G. Ku, L. V. Wang, “Image distortion in thermoacoustic tomography caused by microwave diffraction,” Phys. Rev. E 77, 031923 (2008).

    [23] M. Pramanik, G. Ku, C. Li, L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).

    [24] Y. Xie, B. Guo, J. Li, G. Ku, L. V. Wang, “Adaptive and robust methods of reconstruction (ARMOR) for thermoacoustic tomography,” IEEE Trans. Biomed. Eng. 55, 2741–2752 (2008).

    [25] M. Pramanik, G. Ku, L. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14, 024–028 (2009).

    [26] Z. Liu, L. Liu, Y. Xu, L. V. Wang, “Transcranial thermoacoustic tomography: A comparison of two imaging algorithms,” IEEE Trans. Med. Imag. 32, 289–294 (2013).

    [27] Y. He, C. Liu, L. Lin, L. V. Wang, “Comparative effects of linearly and circularly polarized illumination on microwave induced thermoacoustic tomography,” IEEE Antenn. Wirel. Propag. Lett. (2016), doi: 10.1109/LAWP.2017.2652853.

    [28] S. K. Patch, “Thermoacoustic tomography — Consistency conditions and the partial scan problem,” Phys. Med. Biol. 49, 2305–2315 (2004).

    [29] A. T. Eckhart, R. T. Balmer, W. A. See, S. K. Patch, “ Ex vivo thermoacoustic imaging over large fields of view with 108 MHz irradiation,” IEEE Trans. Biomed. Eng. 58, 2238–2246 (2011).

    [30] D. Fallon, L. Yan, G. W. Hanson, S. K. Patch, “ RF testbed for thermoacoustic tomography,” Rev. Sci. Instrum. 80, 064301 (2009).

    [31] S. K. Patch, D. Hull, M. Thomas, S. K. Griep, K. Jacobsohn, W. A. See, “ Thermoacoustic contrast of prostate cancer due to heating by very high frequency irradiation,” Phys. Med. Biol. 60, 689–708 (2015).

    [32] S. K. Patch, D. Hull, W. A. See, G. W. Hanson, “ Toward quantitative whole organ thermoacoustics with a clinical array plus one very low-frequency channel applied to prostate cancer imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63, 245–255 (2016).

    [33] S. K. Patch, M. K. Covo, A. Jackson, “ Thermoacoustic range verification using a clinical ultrasound array provides perfectly co-registered overlay of the Bragg peak onto an ultrasound image,” Phys. Med. Biol. 61, 5621 (2016).

    [34] D. Razansky, S. Kellnberger, V. Ntziachristos, “ Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys. 37, 4602–4607 (2010).

    [35] S. Kellnberger, A. Hajiaboli, D. Razansky, V. Ntziachristos, “ Near-field thermoacoustic tomography of small animals,” Phys. Med. Biol. 56, 3433–3444 (2011).

    [36] M. Omar, S. Kellnberger, G. Sergiadis, D. Razansky, V. Ntziachristos, “ Near-field thermoacoustic imaging with transmission line pulsers,” Med. Phys. 39, 4460–4466 (2012).

    [37] A. Hajiaboli, S. Kellnberger, V. Ntziachristos, D. Razansky, “ Design and time-domain analysis of a high-voltage impulsed test-bed for near-field thermoacoustic tomography,” Prog. Electromagn. Res. 139, 105–119 (2013).

    [38] L. Yao, G. Guo, H. Jiang, “ Quantitative microwave-induced thermoacoustic tomography,” Med. Phys. 37, 3752–3759 (2010).

    [39] L. Huang, L. Yao, L. Liu, R. Jian, H. Jiang, “ Quantitative thermoacoustic tomography: Recovery of conductivity maps of heterogeneous media,” Appl. Phys. Lett. 101, 244106 (2012).

    [40] L. Huang, J. Rong, L. Yao, W. Qi, D. Wu, J. Xu, H. Jiang, “ Quantitative thermoacoustic tomography for ex vivo imaging conductivity of breast tissue,” Chin. Phys. Lett. 30, 124301 (2013).

    [41] Z. Chi, Y. Zhao, L. Huang, Z. Zheng, H. Jiang, “ Thermoacoustic imaging of rabbit knee joints,” Med. Phys. 43, 6226–6233 (2016).

    [42] L. Huang, W. Cai, Y. Zhao, “In vivo tumor detection with combined MR–photoacoustic–thermoacoustic imaging,” J. Innov. Opt. Health Sci. 9, 1650015 (2016).

    [43] L. Huang, W. Qi, Y. Zhao, Z. Chi, N. Zhang, J. Rong, D. Lai, “Thermoacoustic imaging of human finger joints and bones,” X Acoust. Imaging Sens. 1, 28–31 (2015).

    [44] D. R. Bauer, X. Wang, J. Vollin, H. Xin, R. S. Witte, “Spectroscopic thermoacoustic imaging of water and fat composition,” Appl. Phys. Lett. 101, 033705 (2012).

    [45] X. Wang, D. R. Bauer, J. L. Vollin, D. G. Manzi, R. S. Witte, H. Xin, “Impact of microwave pulses on thermoacoustic imaging applications,” IEEE Antenn. Wirel. Propag. Lett. 11, 1634–1637 (2012).

    [46] X. Wang, D. R. Bauer, R. Witte, H. Xin, “Microwave-induced thermoacoustic imaging model for potential breast cancer detection,” IEEE Trans. Biomed. Eng. 59, 2782–2791 (2012).

    [47] T. Qin, X. Wang, Y. Qin, P. Ingram, G. Wan, R. S. Witte, H. Xin, “Experimental validation of a numerical model for thermoacoustic imaging applications,” IEEE Antenn. Wirel. Propag. Lett. 14, 1235–1238 (2015).

    [48] T. Qin, X. Wang, Y. Qin, G. Wan, R. S. Witte, H. Xin, “Quality improvement of thermoacoustic imaging based on compressive sensing,” IEEE Antenn. Wirel. Propag. Lett. 14, 1200–1203 (2015).

    [49] X. Wang, T. Qin, R. S. Witte, H. Xin, “Computational feasibility study of contrast-enhanced thermoacoustic imaging for breast cancer detection using realistic numerical breast phantoms,” IEEE Trans. Microw. Theory Tech. 63, 1489–1501 (2015).

    [50] H. Nan, A. Arbabian, “Stepped-frequency continuous-wave microwave-induced thermoacoustic imaging,” Appl. Phys. Lett. 104, 224104 (2014).

    [51] M. Aliroteh, H. Nan, A. Arbabian, “Microwave-induced thermoacoustic tomography for subcutaneous vascular imaging,” IEEE Ultrason. Symp. (IUS), pp. 1948–5727 (2016). DOI: 10.1109/ULTSYM.2016.7728643.

    [52] X. Feng, F. Gao, Y. Zheng, “Magnetically mediated thermoacoustic imaging toward deeper penetration,” Appl. Phys. Lett. 103, 083704 (2013).

    [53] X. Feng, F. Gao, Y. Zheng, “Modulatable magnetically mediated thermoacoustic imaging with magnetic nanoparticles,” Appl. Phys. Lett. 106, 153702 (2015).

    [54] G. Fei, X. Feng, Y. Zheng, “Advanced photoacoustic and thermoacoustic sensing and imaging beyond pulsed absorption contrast,” J. Opt. 18, 074006 (2016).

    [55] F. Gao, Y. Zheng, X. Feng, C. Ohl, “Thermoacoustic resonance effect and circuit modelling of biological tissue,” Appl. Phys. Lett. 102, 063702 (2013).

    [56] G. Zangerl, O. Scherzer, M. Haltmeier, “Circular integrating detectors in photo and thermoacoustic tomography,” Inverse Probl. Sci. Eng. 17, 133–142 (2009).

    [57] M. Agranovsky, P. Kuchment, “Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed,” Inverse Probl. 23, 2089–2102 (2007).

    [58] M. Haltmeier, O. Scherzer, P. Burgholzer, R. Nuster, G. Paltauf, “Thermoacoustic tomography and the circular radon transform: Exact inversion formula,” Math. Mod. Meth. Appl. Sci. 17, 635–655 (2007).

    [59] K. H. Lim, J. H. Lee, Q. H. Liu, “Thermoacoustic tomography forward modeling with the spectral element method,” Med. Phys. 35, 4–12 (2008).

    [60] A. Mashal, J. H. Booske, S. C. Hagness, “Toward contrast-enhanced microwave-induced thermoacoustic imaging of breast cancer: An experimental study of the effects of microbubbles on simple thermoacoustic targets,” Phys. Med. Biol. 54 641–650 (2009).

    [61] D. Passeri, U. Sassi, A. Bettucci, E. Tamburri, F. Toschi, S. Orlanducci, M. L. Terranova, M. Rossi, “Thermoacoustic emission from carbon nanotubes imaged by atomic force microscopy,” Adv. Funct. Mater. 22, 2956–2963 (2012).

    [62] N. A. Rejesh, H. Pullagurla, M. Pramanik, M. Pramanik, “Deconvolution-based deblurring of reconstructed images in photoacoustic/thermoacoustic tomography,” J. Opt. Soc. Am. A 30, 1994–2001 (2013).

    [63] M. Pramanik, “Improving tangential resolution with a modified delay-and-sum reconstruction algorithm in photoacoustic and thermoacoustic tomography,” J. Opt. Soc. Am. A 31, 621–627 (2014).

    [64] O. Ogunlade, P. Beard, “Exogenous contrast agents for thermoacoustic imaging: An investigation into the underlying sources of contrast,” Med. Phys. 42, 170–181 (2015).

    [65] C. Zhang, Y. Wang, “A reconstruction algorithm for thermoacoustic tomography with compensation for acoustic speed heterogeneity,” Phys. Med. Biol. 53, 4971–4982 (2008).

    [66] X. Zhu, Z. Zhao, J. Wang, G. Chen, Q. Liu, “Active adjoint modeling method in microwave induced thermoacoustic tomography for breast tumor,” IEEE Trans. Biomed. Eng. 61, 1957–1966 (2014).

    [67] H. Peng, J. Hu, C. Hu, “Fe3O4@ MnO2@ PAA nanoparticles for magnetically targeted microwave-thermal therapy guided by thermoacoustic imaging,” J. Biomater. Tissue Eng. 6, 12–19 (2016).

    [68] A. Dewantari, S. Y. Jeon, S. Kim, “Analysis of microwave-induced thermoacoustic signal generation using computer simulation,” J. Electromagn. Eng. Sci. 16, 1–6 (2016).

    [69] E. Hernández-Rosales, E. Cedeno, J. Hernandez-Wong, “Thermoacoustic and thermoreflectance imaging of biased integrated circuits: Voltage and temperature maps,” Appl. Phys. Lett. 109, 041902 (2016).

    [70] S. Liu, Z. Zhao, X. Zhu, Z.-L. Wang, J. Song, B. Wang, Y.-B. Gong, Z.-P. Nie, Q. H. Liu, “Analysis of short pulse impacting on microwave induced thermo-acoustic tomography,” Prog. Electromagn. Res. C 61, 37–46 (2016).

    [71] B. M. Mihiretie, D. Cederkrantz, M. Sundin, “Thermal depth profiling of materials for defect detection using hot disk technique,” AIP Adv. 6, 085217 (2016).

    [72] Y. He, Y. Shen, C. Liu, “Suppressing excitation effects in microwave induced thermoacoustic tomography by multi-view Hilbert transformation,” Appl. Phys. Lett. 110, 053701 (2017).

    [73] S. Islam, S. Mahmud, M. Biglarbegian, “Effect of magnetic field on the Nusselt number of a multi-plate thermoacoustic system,” Int. J. Therm. Sci. 108, 145–158 (2016).

    [74] Y. Wu, Z. Tang, Y Chi, “A simultaneous multi-probe detection label-free optical-resolution photoacoustic microscopy technique based on microcavity transducer,” J. Innov. Opt. Health Sci. 6, 1350027 (2013).

    [75] Y. Zhao, S. Yang, “Photoacoustic viscoelasticity imaging of biological tissues with intensity-modulated continuous-wave laser,” J. Innov. Opt. Health Sci. 6, 1350033 (2013).

    [76] J. Zhong, S. Yang, “Contrast-enhanced photoacoustic imaging using indocyanine green-containing nanoparticles,” J. Innov. Opt. Health Sci. 7, 1350029 (2014).

    [77] B. Yan, H. Qin, “Indocyanine green loaded graphene oxide for high-efficient photoacoustic tumor therapy,” J. Innov. Opt. Health Sci. 9, 1642001 (2016).

    [78] B. Yin, D. Xing, Y. Wang, Y. Zeng, Y. Tan, Q. Chen, “Fast photoacoustic imaging system based on 320-element linear transducer array,” Phys. Med. Biol. 49, 1339–1346 (2004).

    [79] D. Yang, D. Xing, H. Gu, Y. Tan, “Fast multi-element phase-controlled photoacoustic imaging based on limited-field filtered back projection algorithm,” Appl. Phys. Lett. 87, 194101 (2005).

    [80] L. Zeng, D. Xing, H. Gu, D. Yang, S. Yang, L. Xiang, “Fast microwave-induced thermoacoustic tomography based on multi-element phase-controlled focus technique,” Chin. Phys. Lett. 23, 1215–1218 (2006).

    [81] L. Zeng, D. Xing, H. Gu, D. Yang, S. Yang, L. Xiang, “High antinoise photoacoustic tomography based on a modified filtered backprojection algorithm with combination wavelet,” Med. Phys. 34, 556–563 (2007).

    [82] L. Nie, D. Xing, D. Yang, L. Zeng, Q. Zhou, “Detection of foreign body using fast thermoacoustic tomography with a multielement linear transducer array,” Appl. Phys. Lett. 90, 174109 (2007).

    [83] L. Nie, D. Xing, Q. Zhou, D. Yang, H. Guo, “Microwave-induced thermoacoustic scanning CT for high-contrast and noninvasive breast cancer imaging,” Med. Phys. 35, 4026–4032 (2008).

    [84] L. Nie, D. Xing, S. Yang, “ In vivo detection and imaging of low-density foreign body with microwave-induced thermoacoustic tomography,” Med. Phys. 36, 3429–3437 (2009)

    [85] C. Lou, D. Xing, “ Temperature monitoring utilizing thermoacoustic signals during pulsed microwave thermotherapy: A feasibility study,” Int. J. Hypertherm. 26, 338–346 (2010).

    [86] C. Lou, L. Nie, D. Xu, “ Effect of excitation pulse width on thermoacoustic signal characteristics and the corresponding algorithm for optimization of imaging resolution,” J. Appl. Phys. 110, 083101 (2011).

    [87] C. Cao, L. Nie, C. Lou, D. Xing, “ The feasibility of using microwave-induced thermoacoustic tomography for detection and evaluation of renal calculi,” Phys. Med. Biol. 55, 5203–5212 (2010).

    [88] C. Lou, S. Yang, Z. Ji, Q. Chen, D. Xing, “ Ultrashort microwave-induced thermoacoustic imaging: A breakthrough in excitation efficiency and spatial resolution,” Phys. Rev. Lett. 109, 218101 (2012).

    [89] Y. Fu, Z. Ji, W. Ding, F. Ye, C. Lou, “ Thermoacoustic imaging over large field of view for three-dimensional breast tumor localization: A phantom study,” Med. Phys. 41, 110701 (2014).

    [90] W. Ding, C. Lou, J. Qiu, Z. Zhao, Q. Zhou, M. Liang, S. Yang, Z. Ji, D. Xing, “ Targeted Fe-filled carbon nanotube as a multifunctional contrast agent for thermoacoustic and magnetic resonance imaging of tumor in living mice,” Nanomed. Nanotechnol. Biol. Med. 12, 235–244 (2016).

    [91] F. Ye, Z. Ji, W. Ding, C. Lou, S. Yang, D. Xing, “ Ultrashort microwave-pumped real-time thermoacoustic breast tumor imaging system,” IEEE Trans. Med. Imag. 35, 839–844 (2016).

    [92] W. Ding, Z. Ji, F. Ye, C. Lou, D. Xing, “ Near-field microwave distribution measurement with a point detector base on thermoacoustic effect,” IEEE Trans. Microw. Theory Tech. 63, 3272–3276 (2015).

    [93] Z. Ji, C. Lou, S. Yang, D. Xing, “ Three-dimensional thermoacoustic imaging for early breast cancer detection,” Med. Phys. 39, 6738–6744 (2012).

    [94] Z. Ji, W. Ding, F. Ye, C. Lou, D. Xing, “ Shape-adapting thermoacoustic imaging system based on flexible multi-element transducer,” Appl. Phys. Lett. 107, 094104 (2015).

    [95] Z. Ji, C. Lou, Y. Shi, W. Ding, S. Yang, D. Xing, “ A microwave detection way by electromagnetic and elastic resonance: Breaking the bottleneck of spatial resolution in microwave imaging,” Appl. Phys. Lett. 107, 164103 (2015).

    [96] Z. Ji, W. Ding, S. Yang, Q. Chen, D. Xing, “ Remote measurement of microwave distribution based on optical detection,” Appl. Phys. Lett. 108, 014104 (2016).

    [97] Z. Ji, W. Ding, F. Hao, C. Lou, “ Handheld thermoacoustic scanning system based on a linear-array transducer,” Ultrason. Imag. 38, 276–284 (2016)

    [98] Z. Ji, Y. Fu, S. Yang, “ Microwave-induced thermoacoustic imaging for early breast cancer detection,” J. Innov. Opt. Health Sci. 06, 1350001 (2013).

    [99] H. Nan, K. C. Boyle, N. Apte, M. S. Aliroteh, A. Bhuyan, A. Nikoozadeh, B. T. Khuri-Yakub, A. Arbabian, “ Non-contact thermoacoustic detection of embedded targets using airborne-capacitive micromachined ultrasonic transducers,” Appl. Phys. Lett. 106, 084101 (2015).

    Yongsheng Cui, Chang Yuan, Zhong Ji. A review of microwave-induced thermoacoustic imaging: Excitation source, data acquisition system and biomedical applications[J]. Journal of Innovative Optical Health Sciences, 2017, 10(4): 1730007
    Download Citation