• Journal of Innovative Optical Health Sciences
  • Vol. 2, Issue 3, 253 (2009)
KIRILL V. LARIN1, IRINA V. LARINA2, MICHAEL LIEBLING3, and MARY E. DICKINSON2、*
Author Affiliations
  • 1Department of Biomedical Engineering University of Houston, Houston, TX, USA
  • 2Department of Molecular Physiology and Biophysics Baylor College of Medicine, Houston, TX, USA
  • 3Department of Electrical and Computer Engineering University of California, Santa Barbara, CA, USA
  • show less
    DOI: Cite this Article
    KIRILL V. LARIN, IRINA V. LARINA, MICHAEL LIEBLING, MARY E. DICKINSON. LIVE IMAGING OF EARLY DEVELOPMENTAL PROCESSES IN MAMMALIAN EMBRYOS WITH OPTICAL COHERENCE TOMOGRAPHY[J]. Journal of Innovative Optical Health Sciences, 2009, 2(3): 253 Copy Citation Text show less
    References

    [1] S. W. Ruffins, R. E. Jacobs, S. E. Fraser, “Towards a Tralfamadorian view of the embryo: Multidimensional imaging of development,” Curr. Opin. Neurobiol. 12, 580–586 (2002).

    [2] J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).

    [3] A. S. Forouhar, M. Liebling, A. Hickerson, A. Nasiraei-Moghaddam, H. J. Tsai, J. R. Hove, S. E. Fraser, M. E. Dickinson, M. Gharib, “The embryonic vertebrate heart tube is a dynamic suction pump,” Science 312, 751–753 (2006).

    [4] M. Liebling, A. S. Forouhar,M. Gharib, S. E. Fraser, M. E. Dickinson, “Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences,” J. Biomed. Opt. 10, 054001 (2005).

    [5] M. Liebling, A. S. Forouhar, R. Wolleschensky, B. Zimmermann, R. Ankerhold, S. E. Fraser, M. Gharib, M. E. Dickinson, “Rapid threedimensional imaging and analysis of the beating embryonic heart reveals functional changes during development,” Dev. Dyn. 235, 2940–2948 (2006).

    [6] E. A. Jones, M. H. Baron, S. E. Fraser, M. E. Dickinson, “Measuring hemodynamic changes during mammalian development,” Am. J. Physiol. Heart Circ. Physiol. 287, H1561–1569 (2004).

    [7] E. A. Jones, D. Crotty, P. M. Kulesa, C. W. Waters, M. H. Baron, S. E. Fraser, M. E. Dickinson, “Dynamic in vivo imaging of postimplantation mammalian embryos using whole embryo culture,” Genesis 34, 228–235 (2002).

    [8] J. L. Lucitti, E. A. Jones, C. Huang, J. Chen, S. E. Fraser, M. E. Dickinson, “Vascular remodeling of the mouse yolk sac requires hemodynamic force,” Development 134, 3317–3326 (2007).

    [9] S. A. Boppart, M. E. Brezinski, B. Bouma, G. Tearney, J. G. Fujimoto, “Investigation of developing embryonic morphology using optical coherence tomography,” Developmental Biology 177, 54–63 (1996).

    [10] S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. USA 94, 4256– 4261 (1997).

    [11] T. M. Yelbuz, M. A. Choma, L. Thrane, M. L. Kirby, J. A. Izatt, “Optical coherence tomography — A new high-resolution imaging technology to study cardiac development in chick embryos,” Circulation 106, 2771–2774 (2002).

    [12] V. X. D. Yang, M. Gordon, E. Seng-Yue, S. Lo, B. Qi, J. Pekar, A. Mok, B. Wilson, I. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis,” Opt. Express 11, 1650–1658 (2003).

    [13] M.W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M.Watanabe, D. L.Wilson, I. R. Efimov, A. M. Rollins, “4D embryonic cardiography using gated optical coherence tomography,” Opt. Express 14, 736–748 (2006).

    [14] W. Luo, D. L. Marks, T. S. Ralston, S. A. Boppart, “Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system,” J. Biomed. Opt. 11, 021014 (2006).

    [15] M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding,M. Watanabe, D. L.Wilson, J. G. Fujimoto, A. M. Rollins, “Ultra-highspeed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier domain mode locked laser,” Opt. Express 15, 6251–6267 (2007).

    [16] A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, V. X. D. Yang, “Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system,” Opt. Express 15, 1627–1638 (2007).

    [17] A. M. Davis, F. G. Rothenberg, N. Shepherd, J. A. Izatt, “In vivo spectral domain optical coherence tomography volumetric imaging and spectral Doppler velocimetry of early stage embryonic chicken heart development,” J. Opt. Soc. Am. A 25, 3134–3143 (2008).

    [18] L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis. 14, 2157–2170 (2008).

    [19] I. V. Larina, N. Sudheendran, M. Ghosn, J. Jiang, A. Cable, K. V. Larin, M. E. Dickinson, “Live imaging of blood flow in mammalian embryos using Doppler swept source optical coherence tomography,” J. Biomed. Opt. 13, 0605063 (2008).

    [20] A. Bradu, L. Ma, J. W. Bloor, A. Podoleanu, “Dual optical coherence tomography/fluorescence microscopy for monitoring of Drosophila melanogaster larval heart,” Journal of Biophotonics, DOI: 10.1002/jbio.200910021 (2009).

    [21] A. Davis, J. Izatt, F. Rothenberg, “Quantitative measurement of blood flow dynamics in embryonic vasculature using spectral Doppler velocimetry,” The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology 292, 311–319 (2009).

    [22] I.V. Larina, S. N. Ivers, S. H. Syed,M. E.Dickinson, K. V. Larin, “Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT,” Opt. Lett. 34, 986–988 (2009).

    [23] W. Y. Oh, S. H. Yun, G. J. Tearney, B. E. Bouma, “115kHz tuning repetition rate ultrahighspeed wavelength-swept semiconductor laser,” Opt. Lett. 30, 3159–3161 (2005).

    [24] R. Huber, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett. 32, 2049–2051 (2007).

    [25] R. Huber, M. Wojtkowski, J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).

    [26] B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, J. G. Fujimoto, “Ultrahigh speed Spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16, 15149–15169 (2008).

    [27] D. C. Adler, R. Huber, J. G. Fujimoto, “Phasesensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett. 32, 626–628 (2007).

    [28] V. V. Tuchin, Optical Clearing of Tissues and Blood, Vol. PM 154, Bellingham, WA: SPIE Press (2005).

    [29] I. V. Larina, E. F. Carbajal, V. V. Tuchin, M. E. Dickinson, K. V. Larin, “Enhanced OCT imaging of embryonic tissue with optical clearing,” Laser Phys. Lett. 5, 476–480 (2008).

    KIRILL V. LARIN, IRINA V. LARINA, MICHAEL LIEBLING, MARY E. DICKINSON. LIVE IMAGING OF EARLY DEVELOPMENTAL PROCESSES IN MAMMALIAN EMBRYOS WITH OPTICAL COHERENCE TOMOGRAPHY[J]. Journal of Innovative Optical Health Sciences, 2009, 2(3): 253
    Download Citation