• Photonics Research
  • Vol. 4, Issue 6, 214 (2016)
Rong Chen1, Ying Tian2、*, Bingpeng Li1, Xufeng Jing2, Junjie Zhang1, Shiqing Xu1、3, Hellmut Eckert4, and Xianghua Zhang5
Author Affiliations
  • 1College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China
  • 2Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China
  • 3email:sxucjlu@163.com
  • 4Institut für Physikalische Chemie, WWU Münster, Corrensstra?e 30, D 48149 Münster, Germany
  • 5Laboratory of Glasses and Ceramics, UMR 6226 CNRS-University of Rennes Cedex 135042, France
  • show less
    DOI: 10.1364/PRJ.4.000214 Cite this Article Set citation alerts
    Rong Chen, Ying Tian, Bingpeng Li, Xufeng Jing, Junjie Zhang, Shiqing Xu, Hellmut Eckert, Xianghua Zhang. Thermal and luminescent properties of 2 μm emission in thulium-sensitized holmium-doped silicate-germanate glass[J]. Photonics Research, 2016, 4(6): 214 Copy Citation Text show less
    References

    [1] B. Richards, A. Jha, Y. Tsang, W. Sibbett. Tellurite glass lasers operating close to 2  μm. Laser Phys. Lett., 7, 177-193(2010).

    [2] G. J. Koch, M. Petros, J. Yu, U. N. Singh. Precise wavelength control of a single-frequency pulsed Ho:Tm:YLF laser. Appl. Opt., 41, 1718-1721(2002).

    [3] K. Scholle, E. Heumann, G. Huber. Single mode tm and Tm, Ho: LuAG lasers for LIDAR applications. Laser Phys. Lett., 1, 285-290(2004).

    [4] R. Cao, M. Peng, L. Wondraczek, J. Qiu. Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3. Opt. Express, 20, 2562-2571(2012).

    [5] S. Li, P. Wang, H. Xia, J. Peng, L. Tang, Y. Zhang, H. Jiang. Tm3+ and Nd3+ singly doped LiYF4 single crystals with 3–5  μm mid-infrared luminescence. Chin. Opt. Lett., 12, 021601(2014).

    [6] A. Hemming, S. Bennetts, N. Simakov, A. Davidson, J. Haub, A. Carter. High power operation of cladding pumped holmium-doped silica fiber lasers. Opt. Express, 21, 4560-4566(2013).

    [7] C. Liu, C. Ye, Z. Luo, H. Cheng, D. Wu, Y. Zheng, Z. Liu, B. Qu. High-energy passively Q-switched 2  μm Tm3+-doped double-clad fiber laser using graphene-oxide–deposited fiber taper. Opt. Express, 21, 204-209(2013).

    [8] L. Yi, M. Wang, S. Feng, Y. Chen, G. Wang, L. Hu, J. Zhang. Emission properties of Ho3+: 5I75I8 transition sensitized by Er3+ and Yb3+ in fluorophosphates glasses. Opt. Mater., 31, 1586-1590(2009).

    [9] B. S. Yong, H. T. Lim, Y. G. Choi, Y. S. Kim, J. Heo. 2.0  μm emission properties and energy transfer between Ho3+ and Tm3+ in PbO-Bi2O3-Ga2O3 glasses. J. Am. Ceram. Soc., 83, 787-791(2000).

    [10] Y. Ju, W. Liu, B. Yao, T. Dai, J. Wu, J. Yuan, J. Wang, X. Duan, Y. Wang. Diode-pumped tunable single-longitudinal-mode Tm, Ho:YAG twisted-mode laser. Chin. Opt. Lett., 13, 111403(2015).

    [11] G. Gao, L. Hu, H. Fan, G. Wang, K. Li, S. Feng, S. Fan, H. Chen, J. Pan, J. Zhang. Investigation of 2.0  μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2O3 glasses. Opt. Mater., 32, 402-405(2009).

    [12] L. Kong, G. Xie, P. Yuan, L. Qian, S. Wang, H. Yu, H. Zhang. Passive Q-switching and Q-switched mode-locking operations of 2  μm Tm:CLNGG laser with MoS2 saturable absorber mirror. Photo. Res., 3, A47-A50(2015).

    [13] W. Zhang, L. Rong, J. Ren, Y. Jia, S. Qian. Judd-Ofelt analysis and mid-infrared emission properties of Ho3+-Yb3+ co-doped tellurite oxy-halide glasses. Proc. SPIE, 8906, 89060(2013).

    [14] G. Chen, Q. Zhang, G. Yang, Z. Jiang. Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm3+. J. Fluoresc., 17, 301-307(2007).

    [15] S. D. Jackson. The effects of energy transfer upconversion on the performance of Tm3+/Ho3+-doped silica fiber lasers. IEEE Photon. Technol. Lett., 18, 1885-1887(2006).

    [16] Q. Zhang, J. Ding, Y. Shen, G. Zhang, G. Lin, J. Qiu, D. Chen. Infrared emission properties and energy transfer between Tm3+ and Ho3+ in lanthanum aluminum germanate glasses. J. Opt. Soc. Am. B, 27, 975-980(2010).

    [17] T. Wei, C. Tian, M. Z. Cai, Y. Tian, X. F. Jing, J. J. Zhang, S. Q. Xu. Broadband 2  μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass. J. Quant. Spectrosc. Radiat. Transfer, 161, 95-104(2015).

    [18] W. Fan, L. Htein, B. H. Kim, P. R. Watekar, W. T. Han. Upconversion luminescence in bismuth-doped germane-silicate glass optical fiber. Opt. Laser Technol., 54, 376-379(2013).

    [19] M. Li, G. Bai, Y. Guo, L. Hu, J. Zhang. Investigation on Tm3+-doped silicate glass for 1.8  μm emission. J. Lumin., 132, 1830-1835(2012).

    [20] S. S. Bayya, G. D. Chin, J. S. Sanghera, I. D. Aggarwal. Germanate glass as a window for high energy laser systems. Opt. Express, 14, 11687-11693(2006).

    [21] Z. Yang, S. Xu, L. Hu, Z. Jiang. Thermal analysis and optical transition of Yb3+, Er3+ co-doped lead-germanium-tellurite glasses. J. Mater. Res., 19, 1630-1637(2004).

    [22] D. Dorosz. Rare earth ions doped aluminosilicate and phosphate double clad optical fibres. Bull. Polish Acad. Sci., 56, 103-111(2008).

    [23] G. Bai, L. Tao, K. Li, L. Hu, Y. H. Tsang. Enhanced light emission near 2.7  μm from Er-Nd co-doped germanate glass. Opt. Mater., 35, 1247-1250(2013).

    [24] T. Xue, L. Zhang, L. Wen, M. Liao, L. Hu. Er3+ doped fluorogallate glass for mid-infrared applications. Chin. Opt. Lett., 13, 081602(2015).

    [25] R. Xu, Y. Tian, L. Hu, J. Zhang. Broadband 2  μm emission and energy-transfer properties of thulium-doped oxyfluoride germanate glass fiber. Appl. Phys. B, 104, 839-844(2011).

    [26] A. Hruby. Evaluation of glass-forming tendency by means of DTA. J. Phys. B, 22, 1187-1193(1972).

    [27] M. G. Drexhage, O. H. EI Bayoumi, C. T. Moyniyan. Preparation and properties of heavy-metal fluoride glasses containing ytterbium or lutetium. J. Am. Ceram. Soc., 65, c168-c171(1982).

    [28] Y. Messaddeq, M. Poulain. Stabilizing effect of aluminium, yttrium and zirconium in divalent fluoride glasses. J. Non-Cryst. Solids, 140, 41-46(1992).

    [29] F. Huang, X. Liu, W. Li, L. Hu, D. Chen. Energy transfer mechanism in Er3+ doped fluoride glass sensitized by Tm3+ or Ho3+ for 2.7  μm emission. Chin. Opt. Lett., 12, 051601(2014).

    [30] K. Fukumi, S. Sakka. Coordination state of Nb5+ ions in silicate and gallate glasses as studied by Raman spectroscopy. J. Mater. Sci., 23, 2819-2823(1988).

    [31] A. Aronne, V. N. Sigaev, B. Champagnon, E. Fanelli, V. Califano, L. Z. Usmanova, P. Pernice. The origin of nanostructuring in potassium niobiosilicate glasses by Raman and FTIR spectroscopy. J. Non-Cryst. Solids, 351, 3610-3618(2005).

    [32] H. Verweij. Raman study of the structure of alkali germanosilicate glasses, Lithium, sodium and potassium digermanosilicate glasses. J. Non-Cryst. Solids, 33, 55-69(1979).

    [33] Z. Yang, S. Xu, L. Hu, Z. Jiang. Density of Na2O-(3-x)SiO2-xGeO2 glasses related to structure. Mater. Res. Bull., 39, 217-222(2004).

    [34] R. Xu, Y. Tian, L. Hu, J. Zhang. Structural origin and energy transfer processes of 1.8  μm emission in Tm3+ doped germanate glasses. J. Phys. Chem. A., 115, 6488-6492(2011).

    [35] G. S. Henderson, D. R. Neuville, B. Cochain, L. Cormier. The structure of GeO2-SiO2 glasses and melts: A Raman spectroscopy study. J. Non-Cryst. Solids, 355, 468-474(2009).

    [36] E. V. Kolobkova. Raman-spectroscopy study of the structure of niobium germanate glasses. Soviet J. Glass Phys. Chem., 13, 176-181(1988).

    [37] K. Awazu, H. Kawazoe. Strained Si-O–Si bonds in amorphous SiO2 materials: A family member of active centers in radio, photo, and chemical responses. J. Appl. Phys., 94, 6243-6262(2003).

    [38] B. Judd. Optical absorption intensities of rare-earth ions. Phys. Rev., 127, 750-761(1962).

    [39] G. Ofelt. Intensities of crystal spectra of rare-earth ions. J. Chem. Phys., 37, 511-520(1962).

    [40] E. Rukmini, C. K. Jayasankar. Spectroscopic properties of Ho3+ ion in zinc borosulphate glasses and comparative energy level analyses of Ho3+ ion in various glasses. Opt. Mater., 4, 529-546(1995).

    [41] B. Peng, T. Lzumitani. Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+. Opt. Mater., 4, 797-810(1995).

    [42] K. Binnemans, R. Deun, C. Walrand, J. Adam. Spectroscopic properties of trivalent lanthanide ions in fluorophosphates glasses. J. Non-Cryst. Solids, 238, 11-29(1998).

    [43] X. Li, X. Liu, L. Zhang, L. Hu, J. Zhang. Emission enhancement in Er3+/Pr3+-codoped germanate glasses and their use as a 2.7  μm laser material. Chin. Opt. Lett., 11, 121601(2013).

    [44] M. Li, X. Liu, Y. Guo, L. Hu, J. Zhang. Energy transfer characteristics of silicate glass doped with Er3+, Tm3+, and Ho3+ for 2  μm emission. J. Appl. Phys., 114, 243501(2013).

    [45] M. Wang, L. Yi, G. Wang, L. Hu, J. Zhang. Emission performance in Ho3+ doped fluorophosphates glasses sensitized with Er3+ and Tm3+ under 800  nm excitation. Solid State Commun., 149, 1216-1220(2009).

    [46] D. E. McCumber. Einstein relations connecting broadband emission and absorption spectra. Phys. Rev., 136, A954-A957(1964).

    [47] X. Zou, H. Toratani. Spectroscopic properties and energy transfer in Tm3+ singly-and Tm3+/Ho3+ doubly-doped glasses. J. Non-Cryst. Solids, 195, 113-124(1996).

    [48] R. Xu, M. Wang, Y. Tian, L. Hu, J. Zhang. 2.05  μm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+. J. Appl. Phys., 109, 053503(2011).

    [49] J. Ding, G. Zhao, Y. Tian, W. Chen, L. Hu. Bismuth silicate glass: a new choice for 2  μm fiber lasers. Opt. Mater., 35, 85-88(2012).

    [50] Z. Yang, S. Xu, L. Hu, Z. Jiang. Thermal analysis and optical properties of Yb3+/Er3+codoped oxyfluoride germanate glasses. J. Opt. Soc. Am. B, 21, 951-957(2004).

    [51] D. Shi, Q. Zhang, G. Yang, Z. Jiang. Spectroscopic properties and energy transfer in Ga2O3-Bi2O3-PbO-GeO2 glasses codoped with Tm3+ and Ho3+. J. Non-Cryst. Solids, 353, 1508-1514(2007).

    [52] K. Li, Q. Zhang, S. Fan, L. Zhang, J. Zhang, L. Hu. Mid-infrared luminescence and energy transfer characteristics of Ho3+/Yb3+codoped lanthanum-tungsten-tellurite glasses. Opt. Mater., 33, 31-35(2010).

    [53] A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorgé. Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3  μm. Phys. Rev. B., 61, 5280-5292(2000).

    [54] L. M. Fortes, L. F. Santos, M. C. Goncalves, R. M. Almeida, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Monteil, S. Chaussedent, G. C. Righini. Er3+ ion dispersion in tellurite oxychloride glasses. Opt. Mater., 29, 503-509(2007).

    CLP Journals

    [1] Fangwei Qi, Feifei Huang, Tao Wang, Ruoshan Lei, Junjie Zhang, Shiqing Xu, Long Zhang. Influence of Tm3+ ions on the amplification of Ho3+:5I75I8 transition in fluoride glass modified by Al(PO3)3 for applications in mid-infrared optics[J]. Chinese Optics Letters, 2017, 15(5): 051604

    Rong Chen, Ying Tian, Bingpeng Li, Xufeng Jing, Junjie Zhang, Shiqing Xu, Hellmut Eckert, Xianghua Zhang. Thermal and luminescent properties of 2 μm emission in thulium-sensitized holmium-doped silicate-germanate glass[J]. Photonics Research, 2016, 4(6): 214
    Download Citation