• Infrared and Laser Engineering
  • Vol. 54, Issue 2, 20240441 (2025)
Chonghao GAN1, Wenlin FENG1,2, Xiangzhi LIU1,2,3, Xiaozhan YANG1,2,3..., Xiangmeng LU3, Dajian CUI3 and Cong CHEN4|Show fewer author(s)
Author Affiliations
  • 1School of Science, Chongqing University of Technology, Chongqing 400054, China
  • 2Chongqing Key Laboratory of New Storage Energy Materials and Devices, Chongqing 400054, China
  • 3Chongqing Key Laboratory of Quantum Information Chips and Devices, Chongqing 400061, China
  • 4School of Electrical Engineering, Tongling University, Chinese Academy of Sciences, Tongling 244061, China
  • show less
    DOI: 10.3788/IRLA20240441 Cite this Article
    Chonghao GAN, Wenlin FENG, Xiangzhi LIU, Xiaozhan YANG, Xiangmeng LU, Dajian CUI, Cong CHEN. Progress in analysis of large field of view achromatic function and zoom technology of metalenses (cover paper)[J]. Infrared and Laser Engineering, 2025, 54(2): 20240441 Copy Citation Text show less
    References

    [1] Q LUO, G H GAO, D LIU et al. Wavefront measurement of a large aperture high image quality off-axis Fresnel lens. Optics Express, 31, 1249-1257(2023).

    [2] J C LI, K ZHANG, J L DU et al. Double-sided telecentric zoom optical system using adaptive liquid lenses. Optics Express, 31, 2508-2522(2023).

    [3] N F YU, P GENEVET, M A KATS et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [4] S M WANG, P C WU, V C SU et al. Broadband achromatic optical metasurface devices. Nature Communications, 8, 1-10(2017).

    [5] W K PAN, Z WANG, Y Z CHEN et al. Efficiently controlling near-field wavefronts via designer metasurfaces. ACS Photonics, 10, 2423-2431(2023).

    [6] D HäHNEL, J FöRSTNER, V MYROSHNYCHENKO. Efficient modeling and tailoring of nonlinear wavefronts in dielectric metasurfaces. ACS Photonics, 10, 2502-2510(2023).

    [7] J CHEN, X YE, S L GAO et al. Planar wide-angle-imaging camera enabled by metalens array. Optica, 9, 431-437(2022).

    [8] Y T LIU, Q K CHEN, Z Y TANG et al. Research progress of aberration analysis and imaging technology based on metalens. Chinese Optics, 14, 831-850(2021).

    [9] Q HE, S L SUN, S Y XIAO et al. High-efficiency metasurfaces: principles, realizations, and applications. Advanced Optical Materials, 6, 180041511(2018).

    [10] C CHEN, P P CHEN, J X XI et al. On-chip monolithic wide-angle field-of-view metalens based on quadratic phase profile. AIP Advance, 10, 1152131(2020).

    [11] Y LIU, J H ZHANG, L X ROUX et al. Broadband behavior of quadratic metalenses with a wide field of view. Optics Express, 30, 39860-39867(2022).

    [12] T HU, X FENG, Y X WEI et al. Design of an achromatic zoom metalens doublet in the visible. Optics Letters, 47, 6460-6463(2022).

    [13] M Y WANG, J S LEE, S AGGARWAL et al. Varifocal metalens using tunable and ultralow-loss dielectrics. Advanced Science, 10, 22048991(2023).

    [14] R FU, Z L LI, G X ZHENG et al. Reconfigurable step-zoom metalens without optical and mechanical compensations. Optics Express, 27, 12221-12230(2019).

    [15] M C HU, Y X WEI, H J CAI et al. Polarization-insensitive and achromatic metalens at ultraviolet wavelengths. Journal of Nanophotonics, 13, 0360151(2019).

    [16] Y J WANG, K CHEN, F K ZHOU et al. Resonance phase and geometric phase integrated diffusion metasurface for broadband scattering control. Journal of Physics D: Applied Physics, 54, 1651011(2021).

    [17] M KHORASANINEJAD, A Y ZHU, C ROQUES-CARMES. Polarization-insensitive metalenses at visible wavelengths. Nano Letters, 16, 7229-7234(2016).

    [18] T TANG, S KANWAL, Y LU et al. 3D nano-printed geometric phase metasurfaces for generating accelerating beams with complex amplitude manipulation. Science China Physics, Mechanics & Astronomy, 67, 264211-264211-10(2024).

    [19] Y D DENG, C WU, C MENG et al. Functional metasurface quarter-wave plates for simultaneous polarization conversion and beam steering. ACS Nano, 15, 18532-18540(2021).

    [20] Y LIANG, H LIU, F WANG et al. High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths. Nanomaterials, 8, 2881-15(2018).

    [21] H R LI, C J FAN, J C DANG. Focusing properties of power-exponent-phase vortex beam focused by high numerical-aperture objective. High Power Laser and Particle Beams, 30, 0110021(2018).

    [22] D JEON, K SHIN, S MOON et al. Recent advancements of metalenses for functional imaging. Nano Convergence, 10, 241-260(2023).

    [23] Y ZHOU, J A FAN. Polychromatic metasurfaces for complete control of phase and polarization in the mid-infrared. Light: Science & Applications, 12, 2491-2493(2023).

    [24] H PAHLEVANINEZHAD, M KHORASANINEJAD, Y W HUANG et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nature Photonics, 12, 540-547(2018).

    [25] W T CHEN, A Y ZHU, V SANJEEV et al. A broadband achromatic metalens for focusing and imaging in the visible. Nature Nanotech, 13, 220-226(2018).

    [26] Y L SHI, H D, R J T et al. Ultra-thin, zoom capable, flexible metalenses with high focusing efficiency and large numerical aperture. Nanophotonics, 13, 1339-1349(2024).

    [27] D MARPAUNG, J P YAO, J CAPMANY. Integrated microwave photonics. Nature Photonics, 13, 80-90(2019).

    [28] M KHORASANINEJAD, F CAPASSO. Metalenses: Versatile multifunctional photonic components. Science, 358, 8100(2017).

    [29] Z Y LIU, D Y WANG, H GAO et al. Metasurface-enabled augmented reality display: a review. Advanced Photonics, 5, 034001(2023).

    [30] J ZHANG, X DUN, J Y ZHU et al. Large numerical aperture metalens with high modulation transfer function. ACS Photonics, 10, 1389-1396(2023).

    [31] Q B FAN, M Z LIU, C YANG et al. A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging. Applied Physics Letters, 113, 2011041(2018).

    [32] J J WANG, D L CHEN, Z WANG et al. Focusing enhanced broadband metalens via height optimization. Optoelectron Letters, 18, 72-76(2022).

    [33] F BALLI, M A SULTAN, J T HASTINGS. Rotationally tunable varifocal 3D metalens. Optics Letters, 46, 3548-3551(2021).

    [34] W L HE, L XIN, Z M YANG et al. Mid-infrared large-aperture metalens design verification and double-layer micro-optical system optimization. Optical Materials Express, 14, 1321-1335(2024).

    [35] Y H GUO, X L MA, M B PU et al. High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens. Advanced Optical Materials, 6, 18005921(2018).

    [36] J XU, M CUA, E H J ZHOU et al. Wide-angular-range and high-resolution beam steering by a metasurface-coupled phased array. Optics Letters, 43, 5255-5258(2018).

    [37] F XU, W J CHEN, M LI et al. Broadband achromatic and wide field-of-view single-layer metalenses in the mid-infrared. Optics Express, 31, 36439-36450(2023).

    [38] B B XU, H M LI, S L GAO et al. Metalens-integrated compact imaging devices for wide-field microscopy. Advanced Photonics, 2, 0660041(2020).

    [39] X S MA, Q LUO, Y ZHOU et al. A wide-field-of-view metalens array for CMOS image sensors’ conical light focusing. Results in Physics, 59, 1075831(2024).

    [40] K OU, F L YU, J CHEN. Research progress of broadband achromatic infrared metalens (Invited). Infrared and Laser Engineering, 50, 20211003(2021).

    [41] H NEJADRIAHI, P GAUR, K JOHNSON et al. Realization of a wide steering end-fire facet optical phased array using silicon rich silicon nitride. Optics Express, 48, 807-810(2023).

    [42] E LEE, J JIN, K CHUN et al. High-performance optical phased array for LiDARs demonstrated by monolithic integration of polymer and SiN waveguides. Optics Express, 31, 28112-28121(2023).

    [43] O AVAYU, E ALMEIDA, Y PRIOR et al. Composite functional metasurfaces for multispectral achromatic optics. Nature Communications, 8, 149921(2017).

    [44] Z Y LI, P LIN, Y W HUANG et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Science Advances, 7, 4458(2021).

    [45] Y CHEN, Y DING, H YU et al. Design of an achromatic graphene oxide metalens with multi-wavelength for visible light. Photonics, 11, 2491-2512(2024).

    [46] S M WANG, P C WU, V C SU et al. A broadband achromatic metalens in the visible. Nature Nanotech, 13, 227-232(2018).

    [47] M LI, S LI, L K CHIN et al. Dual-layer achromatic metalens design with an effective Abbe number. Optics Express, 28, 26041-26055(2020).

    [48] X H SUN, M M YAN, S HUO et al. High-NA broadband achromatic metalens in the visible range. Optical Material Express, 13, 2690-2698(2023).

    [49] L R ZHAO, X Q JIANG, C X LI et al. High-NA and broadband achromatic metalens for sub-diffraction focusing of long-wavelength infrared waves. Results in Physics, 46, 1063081(2023).

    [50] D M XIU, S J LIU, Y LI et al. High NA and polarization-insensitive ultra-broadband achromatic metalens from 500 to 1050 nm for multicolor two-photon endomicroscopy imaging. Optics Express, 31, 30092-30107(2023).

    [51] Y YUAN, Z L YAN, P F ZHANG et al. A broadband achromatic dielectric planar metalens in mid-IR range. Photonic Sensors, 13, 2301261(2023).

    [52] Y Y XU, Y GENG, Y LIANG et al. Research on the design of metalens with achromatic and amplitude. Optoelectronics Letters, 19, 77-82(2023).

    [53] W T CHEN, A Y ZHU, J SISLER et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nature Communications, 10, 3551-3557(2019).

    [54] S YUE, Y X LIU, R WANG et al. All-silicon polarization-independent broadband achromatic metalens designed for the mid-wave and long-wave infrared. Optics Express, 31, 44340-44352(2023).

    [55] S BAEK, J KIM, Y KIM et al. High numerical aperture RGB achromatic metalens in the visible. Photonics Research, 10, B30-B39(2022).

    [56] R X SONG, X T LU, F WANG et al. Multi-zone taylor expansion method for broadband achromatic polarization-insensitive metalens design. Physica Scripta, 99, 0255301(2024).

    [57] J Q REN, Y J ZHOU, Z L SHAO et al. Geometric-phase-based axicon lens for computational achromatic imaging. Optics Letters, 48, 3737-3740(2023).

    [58] C ZHANG, L CHEN, Z L LIN et al. Tantalum pentoxide: a new material platform for high-performance dielectric metasurface optics in the ultraviolet and visible region. Light: Science & Applications, 13, 13-23(2024).

    [59] H R MO, Z T JI, Y D ZHENG. Broadband achromatic imaging with metalens (invited). Infrared and Laser Engineering, 50, 20211005(2021).

    [60] M N GAO, M CHENG, W F CAI et al. Programmable spatially-varying linearly polarized light with high degree of polarization for planar liquid crystal photonics. Optics and Lasers in Engineering, 179, 108254(2024).

    [61] J YAO, R LIN, X Y CHE et al. Integrated-resonant units for phase compensation and efficiency enhancements in achromatic meta-lenses. ACS Photonics, 10, 4273-4281(2023).

    [62] Q B FAN, Y L WANG, M Z LIU et al. High-efficiency, linear-polarization-multiplexing metalens for long-wavelength infrared light. Optics Letters, 43, 6005-6008(2018).

    [63] C Y FAN, T J CHUANG, K H WU et al. Electrically modulated varifocal metalens combined with twisted nematic liquid crystals. Optics Express, 28, 10609-10617(2020).

    [64] S J ZHANG, X Y CHEN, K LIU et al. Nonvolatile reconfigurable dynamic Janus metasurfaces in the terahertz regime. Photonics Research, 10, 1731-1743(2022).

    [65] C CHEN, W G SONG, J W CHEN et al. Spectral tomographic imaging with aplanatic metalens. Light: Science & Applications, 8, 991-998(2019).

    [66] Y FAN, K D PHUONG, A SENSONG et al. Design of continuously tunable varifocal metalenses. Journal of Optics, 25, 1151021(2023).

    [67] C WANG, Y SUN, Z Q YU et al. Dual-functional tunable metasurface for meta-axicon with a variable depth of focus and continuous-zoom metalens. Nanomaterials, 13, 25301-25316(2023).

    [68] Y ZHOU, H Y ZHENG, I I KRAVCHENKO et al. Flat optics for image differentiation. Nature Photonics, 14, 316-323(2020).

    [69] Y M ZHAO, F F LIU, Z P SUI et al. Circular-target-style bifocal zoom metalens. Optics Express, 32, 3241-3250(2024).

    [70] Q Y YANG, W WANG, X TIAN. High numerical aperture bifocal metalens with regulatory focusing intensity. Infrared and Laser Engineering, 51, 20210602(2022).

    [71] HANG L L, WEI Q S, WANG Y T. Development applications of wavefront modulation technology based on new functional metasurfaces(invited)[J]. Infrared Laser Engineering , 2019, 48(10): 1002001. (in Chinese)

    [72] X JIANG, W FAN, C QIN et al. Ultra-broadband polarization conversion metasurface with high transmission for efficient multi-functional wavefront manipulation in the terahertz range. Nanomaterials, 11, 2895(2021).

    CLP Journals

    [1] Liping LAI, Wenfa WANG, Zhiming CHEN. Design of Fresnel lens for autostereoscopic 3D display with high brightness uniformity[J]. Infrared and Laser Engineering, 2025, 54(6): 20250098

    Chonghao GAN, Wenlin FENG, Xiangzhi LIU, Xiaozhan YANG, Xiangmeng LU, Dajian CUI, Cong CHEN. Progress in analysis of large field of view achromatic function and zoom technology of metalenses (cover paper)[J]. Infrared and Laser Engineering, 2025, 54(2): 20240441
    Download Citation