[1] Q LUO, G H GAO, D LIU et al. Wavefront measurement of a large aperture high image quality off-axis Fresnel lens. Optics Express, 31, 1249-1257(2023).
[2] J C LI, K ZHANG, J L DU et al. Double-sided telecentric zoom optical system using adaptive liquid lenses. Optics Express, 31, 2508-2522(2023).
[3] N F YU, P GENEVET, M A KATS et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).
[4] S M WANG, P C WU, V C SU et al. Broadband achromatic optical metasurface devices. Nature Communications, 8, 1-10(2017).
[5] W K PAN, Z WANG, Y Z CHEN et al. Efficiently controlling near-field wavefronts via designer metasurfaces. ACS Photonics, 10, 2423-2431(2023).
[6] D HäHNEL, J FöRSTNER, V MYROSHNYCHENKO. Efficient modeling and tailoring of nonlinear wavefronts in dielectric metasurfaces. ACS Photonics, 10, 2502-2510(2023).
[7] J CHEN, X YE, S L GAO et al. Planar wide-angle-imaging camera enabled by metalens array. Optica, 9, 431-437(2022).
[8] Y T LIU, Q K CHEN, Z Y TANG et al. Research progress of aberration analysis and imaging technology based on metalens. Chinese Optics, 14, 831-850(2021).
[9] Q HE, S L SUN, S Y XIAO et al. High-efficiency metasurfaces: principles, realizations, and applications. Advanced Optical Materials, 6, 180041511(2018).
[10] C CHEN, P P CHEN, J X XI et al. On-chip monolithic wide-angle field-of-view metalens based on quadratic phase profile. AIP Advance, 10, 1152131(2020).
[11] Y LIU, J H ZHANG, L X ROUX et al. Broadband behavior of quadratic metalenses with a wide field of view. Optics Express, 30, 39860-39867(2022).
[12] T HU, X FENG, Y X WEI et al. Design of an achromatic zoom metalens doublet in the visible. Optics Letters, 47, 6460-6463(2022).
[13] M Y WANG, J S LEE, S AGGARWAL et al. Varifocal metalens using tunable and ultralow-loss dielectrics. Advanced Science, 10, 22048991(2023).
[14] R FU, Z L LI, G X ZHENG et al. Reconfigurable step-zoom metalens without optical and mechanical compensations. Optics Express, 27, 12221-12230(2019).
[15] M C HU, Y X WEI, H J CAI et al. Polarization-insensitive and achromatic metalens at ultraviolet wavelengths. Journal of Nanophotonics, 13, 0360151(2019).
[16] Y J WANG, K CHEN, F K ZHOU et al. Resonance phase and geometric phase integrated diffusion metasurface for broadband scattering control. Journal of Physics D: Applied Physics, 54, 1651011(2021).
[17] M KHORASANINEJAD, A Y ZHU, C ROQUES-CARMES. Polarization-insensitive metalenses at visible wavelengths. Nano Letters, 16, 7229-7234(2016).
[18] T TANG, S KANWAL, Y LU et al. 3D nano-printed geometric phase metasurfaces for generating accelerating beams with complex amplitude manipulation. Science China Physics, Mechanics & Astronomy, 67, 264211-264211-10(2024).
[19] Y D DENG, C WU, C MENG et al. Functional metasurface quarter-wave plates for simultaneous polarization conversion and beam steering. ACS Nano, 15, 18532-18540(2021).
[20] Y LIANG, H LIU, F WANG et al. High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths. Nanomaterials, 8, 2881-15(2018).
[21] H R LI, C J FAN, J C DANG. Focusing properties of power-exponent-phase vortex beam focused by high numerical-aperture objective. High Power Laser and Particle Beams, 30, 0110021(2018).
[22] D JEON, K SHIN, S MOON et al. Recent advancements of metalenses for functional imaging. Nano Convergence, 10, 241-260(2023).
[23] Y ZHOU, J A FAN. Polychromatic metasurfaces for complete control of phase and polarization in the mid-infrared. Light: Science & Applications, 12, 2491-2493(2023).
[24] H PAHLEVANINEZHAD, M KHORASANINEJAD, Y W HUANG et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nature Photonics, 12, 540-547(2018).
[25] W T CHEN, A Y ZHU, V SANJEEV et al. A broadband achromatic metalens for focusing and imaging in the visible. Nature Nanotech, 13, 220-226(2018).
[26] Y L SHI, H D, R J T et al. Ultra-thin, zoom capable, flexible metalenses with high focusing efficiency and large numerical aperture. Nanophotonics, 13, 1339-1349(2024).
[27] D MARPAUNG, J P YAO, J CAPMANY. Integrated microwave photonics. Nature Photonics, 13, 80-90(2019).
[28] M KHORASANINEJAD, F CAPASSO. Metalenses: Versatile multifunctional photonic components. Science, 358, 8100(2017).
[29] Z Y LIU, D Y WANG, H GAO et al. Metasurface-enabled augmented reality display: a review. Advanced Photonics, 5, 034001(2023).
[30] J ZHANG, X DUN, J Y ZHU et al. Large numerical aperture metalens with high modulation transfer function. ACS Photonics, 10, 1389-1396(2023).
[31] Q B FAN, M Z LIU, C YANG et al. A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging. Applied Physics Letters, 113, 2011041(2018).
[32] J J WANG, D L CHEN, Z WANG et al. Focusing enhanced broadband metalens via height optimization. Optoelectron Letters, 18, 72-76(2022).
[33] F BALLI, M A SULTAN, J T HASTINGS. Rotationally tunable varifocal 3D metalens. Optics Letters, 46, 3548-3551(2021).
[34] W L HE, L XIN, Z M YANG et al. Mid-infrared large-aperture metalens design verification and double-layer micro-optical system optimization. Optical Materials Express, 14, 1321-1335(2024).
[35] Y H GUO, X L MA, M B PU et al. High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens. Advanced Optical Materials, 6, 18005921(2018).
[36] J XU, M CUA, E H J ZHOU et al. Wide-angular-range and high-resolution beam steering by a metasurface-coupled phased array. Optics Letters, 43, 5255-5258(2018).
[37] F XU, W J CHEN, M LI et al. Broadband achromatic and wide field-of-view single-layer metalenses in the mid-infrared. Optics Express, 31, 36439-36450(2023).
[38] B B XU, H M LI, S L GAO et al. Metalens-integrated compact imaging devices for wide-field microscopy. Advanced Photonics, 2, 0660041(2020).
[39] X S MA, Q LUO, Y ZHOU et al. A wide-field-of-view metalens array for CMOS image sensors’ conical light focusing. Results in Physics, 59, 1075831(2024).
[40] K OU, F L YU, J CHEN. Research progress of broadband achromatic infrared metalens (Invited). Infrared and Laser Engineering, 50, 20211003(2021).
[41] H NEJADRIAHI, P GAUR, K JOHNSON et al. Realization of a wide steering end-fire facet optical phased array using silicon rich silicon nitride. Optics Express, 48, 807-810(2023).
[42] E LEE, J JIN, K CHUN et al. High-performance optical phased array for LiDARs demonstrated by monolithic integration of polymer and SiN waveguides. Optics Express, 31, 28112-28121(2023).
[43] O AVAYU, E ALMEIDA, Y PRIOR et al. Composite functional metasurfaces for multispectral achromatic optics. Nature Communications, 8, 149921(2017).
[44] Z Y LI, P LIN, Y W HUANG et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Science Advances, 7, 4458(2021).
[45] Y CHEN, Y DING, H YU et al. Design of an achromatic graphene oxide metalens with multi-wavelength for visible light. Photonics, 11, 2491-2512(2024).
[46] S M WANG, P C WU, V C SU et al. A broadband achromatic metalens in the visible. Nature Nanotech, 13, 227-232(2018).
[47] M LI, S LI, L K CHIN et al. Dual-layer achromatic metalens design with an effective Abbe number. Optics Express, 28, 26041-26055(2020).
[48] X H SUN, M M YAN, S HUO et al. High-NA broadband achromatic metalens in the visible range. Optical Material Express, 13, 2690-2698(2023).
[49] L R ZHAO, X Q JIANG, C X LI et al. High-NA and broadband achromatic metalens for sub-diffraction focusing of long-wavelength infrared waves. Results in Physics, 46, 1063081(2023).
[50] D M XIU, S J LIU, Y LI et al. High NA and polarization-insensitive ultra-broadband achromatic metalens from 500 to 1050 nm for multicolor two-photon endomicroscopy imaging. Optics Express, 31, 30092-30107(2023).
[51] Y YUAN, Z L YAN, P F ZHANG et al. A broadband achromatic dielectric planar metalens in mid-IR range. Photonic Sensors, 13, 2301261(2023).
[52] Y Y XU, Y GENG, Y LIANG et al. Research on the design of metalens with achromatic and amplitude. Optoelectronics Letters, 19, 77-82(2023).
[53] W T CHEN, A Y ZHU, J SISLER et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nature Communications, 10, 3551-3557(2019).
[54] S YUE, Y X LIU, R WANG et al. All-silicon polarization-independent broadband achromatic metalens designed for the mid-wave and long-wave infrared. Optics Express, 31, 44340-44352(2023).
[55] S BAEK, J KIM, Y KIM et al. High numerical aperture RGB achromatic metalens in the visible. Photonics Research, 10, B30-B39(2022).
[56] R X SONG, X T LU, F WANG et al. Multi-zone taylor expansion method for broadband achromatic polarization-insensitive metalens design. Physica Scripta, 99, 0255301(2024).
[57] J Q REN, Y J ZHOU, Z L SHAO et al. Geometric-phase-based axicon lens for computational achromatic imaging. Optics Letters, 48, 3737-3740(2023).
[58] C ZHANG, L CHEN, Z L LIN et al. Tantalum pentoxide: a new material platform for high-performance dielectric metasurface optics in the ultraviolet and visible region. Light: Science & Applications, 13, 13-23(2024).
[59] H R MO, Z T JI, Y D ZHENG. Broadband achromatic imaging with metalens (invited). Infrared and Laser Engineering, 50, 20211005(2021).
[60] M N GAO, M CHENG, W F CAI et al. Programmable spatially-varying linearly polarized light with high degree of polarization for planar liquid crystal photonics. Optics and Lasers in Engineering, 179, 108254(2024).
[61] J YAO, R LIN, X Y CHE et al. Integrated-resonant units for phase compensation and efficiency enhancements in achromatic meta-lenses. ACS Photonics, 10, 4273-4281(2023).
[62] Q B FAN, Y L WANG, M Z LIU et al. High-efficiency, linear-polarization-multiplexing metalens for long-wavelength infrared light. Optics Letters, 43, 6005-6008(2018).
[63] C Y FAN, T J CHUANG, K H WU et al. Electrically modulated varifocal metalens combined with twisted nematic liquid crystals. Optics Express, 28, 10609-10617(2020).
[64] S J ZHANG, X Y CHEN, K LIU et al. Nonvolatile reconfigurable dynamic Janus metasurfaces in the terahertz regime. Photonics Research, 10, 1731-1743(2022).
[65] C CHEN, W G SONG, J W CHEN et al. Spectral tomographic imaging with aplanatic metalens. Light: Science & Applications, 8, 991-998(2019).
[66] Y FAN, K D PHUONG, A SENSONG et al. Design of continuously tunable varifocal metalenses. Journal of Optics, 25, 1151021(2023).
[67] C WANG, Y SUN, Z Q YU et al. Dual-functional tunable metasurface for meta-axicon with a variable depth of focus and continuous-zoom metalens. Nanomaterials, 13, 25301-25316(2023).
[68] Y ZHOU, H Y ZHENG, I I KRAVCHENKO et al. Flat optics for image differentiation. Nature Photonics, 14, 316-323(2020).
[69] Y M ZHAO, F F LIU, Z P SUI et al. Circular-target-style bifocal zoom metalens. Optics Express, 32, 3241-3250(2024).
[70] Q Y YANG, W WANG, X TIAN. High numerical aperture bifocal metalens with regulatory focusing intensity. Infrared and Laser Engineering, 51, 20210602(2022).
[71] HANG L L, WEI Q S, WANG Y T. Development applications of wavefront modulation technology based on new functional metasurfaces(invited)[J]. Infrared Laser Engineering , 2019, 48(10): 1002001. (in Chinese)
[72] X JIANG, W FAN, C QIN et al. Ultra-broadband polarization conversion metasurface with high transmission for efficient multi-functional wavefront manipulation in the terahertz range. Nanomaterials, 11, 2895(2021).