• Acta Photonica Sinica
  • Vol. 49, Issue 12, 34 (2020)
Cong WEI1、2, Ci-ming ZHOU1, Xi CHEN1、2, Yu-xiao LI1、2, Han-jie LIU1、2, and Dian FAN1、*
Author Affiliations
  • 1National Engineering Laboratory for Fiber Optic Sensor Technology, Wuhan University of Technology, Wuhan430070, China
  • 2School of Information Engineering, Wuhan University of Technology, Wuhan430070, China
  • show less
    DOI: 10.3788/gzxb20204912.1206001 Cite this Article
    Cong WEI, Ci-ming ZHOU, Xi CHEN, Yu-xiao LI, Han-jie LIU, Dian FAN. FBG Demodulation Method Based on Frequency Shift Interference Digital Mixing Algorithm[J]. Acta Photonica Sinica, 2020, 49(12): 34 Copy Citation Text show less
    Modified frequency shift interference structure
    Fig. 1. Modified frequency shift interference structure
    Demodulating principle diagram of digital mixing method in modified FSI system
    Fig. 2. Demodulating principle diagram of digital mixing method in modified FSI system
    Simulation output interference spectrum
    Fig. 3. Simulation output interference spectrum
    Continuous wavelength demodulation result
    Fig. 4. Continuous wavelength demodulation result
    Continuous wavelength demodulation result
    Fig. 5. Continuous wavelength demodulation result
    MFSI temperature sensing system
    Fig. 6. MFSI temperature sensing system
    Demodulation result of digital mixing method
    Fig. 7. Demodulation result of digital mixing method
    Temperature experimental demodulation results
    Fig. 8. Temperature experimental demodulation results

    Wavelength shift

    Δλ/nm

    Standard phase

    difference/rad

    Phase demodulation

    difference/rad

    Wavelength demodulation difference Δλ'/nmλλ'|/nm
    1 549.500~1 548.0001.5714.7114.4992.999
    1 551.000~1 549.5001.5711.5751.5040.004
    1 552.500~1 551.0001.5712.7162.5941.094
    1 554.000~1 552.5001.5711.5691.4980.002
    Table 1. Simulation results of Hilbert transformation

    Wavelength shift

    Δλ/nm

    Standard phase

    difference/rad

    Phase demodulation

    difference/rad

    Wavelength demodulation difference Δλ'/nm|Δλ-Δλ'|/nm
    1 549.500~1 548.0001.5711.5751.5040.004
    1 551.000~1 549.5001.5711.5721.5010.001
    1 552.500~1 551.0001.5711.5701.4990.001
    1 554.000~1 552.5001.5711.5671.4960.001
    Table 2. Simulation results of digital mixing method

    Wavelength shift

    Δλ/nm

    Standard phase

    difference/rad

    Phase demodulation

    difference/rad

    Wavelength demodulation difference Δλ'/nmλλ'|/nm
    1 549.475~1 548.0001.5521.5361.4590.016
    1 550.950~1 549.4751.5521.5581.4800.005
    1 552.425~1 550.9501.5521.5581.4800.005
    1 553.900~1 552.4251.5521.5381.4610.014
    Table 3. Demodulation of adjacent phase difference by digital mixing method
    Number of measurement groups

    Adjacent temperature

    difference/℃

    Fitting FBG wavelength

    with temperature using spectrometer data/(pm·℃-1

    Hilbert transform demodulation

    Wavelength variation with temperature/(pm·℃-1

    Demodulating wavelength with temperature by digital mixing/(pm·℃-1
    120.4~25.0℃(4.6℃)26.428.325.2
    225.0~30.5℃(5.5℃)26.427.625.9
    330.5~35.7℃(5.2℃)26.427.526.8
    435.7~40.2℃(4.5℃)26.430.425.1
    540.2~45.5℃(5.3℃)26.426.624.4
    645.5~50.5℃(5.0℃)26.429.625.8
    750.5~56.0℃(5.5℃)26.423.825.0
    856.0~60.0℃(4.0℃)26.432.526.9
    960.0~65.0℃(5.0℃)26.429.026.5
    1065.0~70.0℃(5.0℃)26.430.425.9
    Table 4. Logic circuit characteristics of one-hot FSM phase compensation
    Cong WEI, Ci-ming ZHOU, Xi CHEN, Yu-xiao LI, Han-jie LIU, Dian FAN. FBG Demodulation Method Based on Frequency Shift Interference Digital Mixing Algorithm[J]. Acta Photonica Sinica, 2020, 49(12): 34
    Download Citation