• Advanced Photonics
  • Vol. 4, Issue 3, 035003 (2022)
David E. Fernandes1, Ricardo A. M. Pereira2, Sylvain Lannebère1, Tiago A. Morgado1, and Mário G. Silveirinha3、*
Author Affiliations
  • 1University of Coimbra, Instituto de Telecomunicações and Department of Electrical Engineering, Coimbra, Portugal
  • 2University of Aveiro, Instituto de Telecomunicações, Department of Electronics, Telecommunications and Informatics, Aveiro, Portugal
  • 3University of Lisbon, Instituto Superior Técnico and Instituto de Telecomunicações, Department of Electrical Engineering, Lisboa, Portugal
  • show less
    DOI: 10.1117/1.AP.4.3.035003 Cite this Article Set citation alerts
    David E. Fernandes, Ricardo A. M. Pereira, Sylvain Lannebère, Tiago A. Morgado, Mário G. Silveirinha. Experimental verification of ill-defined topologies and energy sinks in electromagnetic continua[J]. Advanced Photonics, 2022, 4(3): 035003 Copy Citation Text show less
    References

    [1] F. D. M. Haldane, S. Raghu. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett., 100, 013904(2008).

    [2] S. Raghu, F. D. M. Haldane. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A, 78, 033834(2008).

    [3] L. Lu, J. D. Joannopoulos, M. Soljačić. Topological photonics. Nat. Photonics, 8, 821-829(2014).

    [4] L. Lu, J. D. Joannopoulos, M. Soljačić. Topological states in photonic systems. Nat. Phys., 12, 626-629(2016).

    [5] L. E. Zhukov, M. E. Raikh. Chiral electromagnetic waves at the boundary of optical isomers: quantum Cotton-Mouton effect. Phys. Rev. B, 61, 12842(2000).

    [6] Z. Yu et al. One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal. Phys. Rev. Lett., 100, 023902(2008).

    [7] Z. Wang et al. Observation of unidirectional backscattering immune topological electromagnetic states. Nature, 461, 772-775(2009).

    [8] M. C. Rechtsman et al. Photonic Floquet topological insulators. Nature, 496, 196-200(2013).

    [9] W. Gao et al. Topological photonic phase in chiral hyperbolic metamaterials. Phys. Rev. Lett., 114, 037402(2015).

    [10] T. Ma et al. Guiding electromagnetic waves around sharp corners: topologically protected photonic transport in metawaveguides. Phys. Rev. Lett., 114, 127401(2015).

    [11] M. Hafezi et al. Robust optical delay lines with topological protection. Nat. Phys., 7, 907-912(2011).

    [12] O. Luukkonen, U. K. Chettiar, N. Engheta. One-way waveguides connected to one-way loads. IEEE Antennas Wireless Propag. Lett., 11, 1398-1401(2012).

    [13] A. B. Khanikaev et al. Photonic topological insulators. Nat. Mater., 12, 233-239(2013).

    [14] A. Slobozhanyuk et al. Three-dimensional all-dielectric photonic topological insulator. Nat. Photonics, 11, 130-136(2017).

    [15] C. He et al. Photonic topological insulator with broken time-reversal symmetry. Proc. Natl. Acad. Sci. U. S. A., 113, 4924-4928(2016).

    [16] W.-J. Chen et al. Symmetry-protected transport in a pseudospin-polarized waveguide. Nat. Commun., 6, 8183(2015).

    [17] W. Gao et al. Photonic Weyl degeneracies in magnetized plasma. Nat. Commun., 7, 12435(2016).

    [18] R. Fleury, A. Khanikaev, A. Alù. Floquet topological insulators for sound. Nat. Commun., 7, 11744(2016).

    [19] M. G. Silveirinha. Z2 topological index for continuous photonic materials. Phys. Rev. B, 93, 075110(2016).

    [20] M. G. Silveirinha. PTD symmetry protected scattering anomaly in optics. Phys. Rev. B, 95, 035153(2017).

    [21] M. G. Silveirinha. Topological angular momentum and radiative heat transport in closed orbits. Phys. Rev. B, 95, 115103(2017).

    [22] D. E. Fernandes, M. G. Silveirinha. Topological origin of electromagnetic energy sinks. Phys. Rev. Appl., 12, 014021(2019).

    [23] A. M. Holmes, M. Sabbaghi, G. W. Hanson. Experimental realization of topologically protected unidirectional surface magnon polaritons on ceramic YIG ferrites. Phys. Rev. B, 104, 214433(2021).

    [24] Y. Hatsugai. Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett., 71, 3697-3700(1993).

    [25] M. G. Silveirinha. Bulk-edge correspondence for topological photonic continua. Phys. Rev. B, 94, 205105(2016).

    [26] M. G. Silveirinha. Proof of the bulk-edge correspondence through a link between topological photonics and fluctuation-electrodynamics. Phys. Rev. X, 9, 011037(2019).

    [27] M. G. Silveirinha. Chern invariants for continuous media. Phys. Rev. B, 92, 125153(2015).

    [28] S. Buddhiraju et al. Absence of unidirectionally propagating surface plasmon-polaritons in nonreciprocal plasmonics. Nat. Commun., 11, 674(2020).

    [29] S. A. H. Gangaraj, F. Monticone. Do truly unidirectional surface plasmon-polaritons exist?. Optica, 6, 1158-1165(2019).

    [30] S. Pakniyat, G. W. Hanson, S. A. H. Gangaraj. Chern invariants of topological continua; a self-consistent nonlocal hydrodynamic model. Phys. Rev. B, 105, 035310(2022).

    [31] S. A. H. Gangaraj, F. Monticone. Physical violations of the bulk-edge correspondence in topological electromagnetics. Phys. Rev. Lett., 124, 153901(2020).

    [32] B. Lax, K. J. Button. New ferrite mode configurations and their applications. J. Appl. Phys., 26, 1186(1955).

    [33] M. Kales. Topics in guided-wave propagation in magnetized ferrites. Proc. IRE, 44, 1403-1409(1956).

    [34] A. Bresler. On the TEn0 modes of a ferrite slab loaded rectangular waveguide and the associated thermodynamic paradox. IRE Trans. Microwave Theory Tech., 8, 81-95(1960).

    [35] A. Ishimaru. Unidirectional waves in anisotropic media and the resolution of the thermodynamic paradox(1962).

    [36] G. Barzilai, G. Gerosa. Rectangular waveguides loaded with magnetised ferrite, and the so-called thermodynamic paradox. Proc. IEE, 113, 285-288(1966).

    [37] U. K. Chettiar, A. R. Davoyan, N. Engheta. Hotspots from nonreciprocal surface waves. Opt. Lett., 39, 1760-1763(2014).

    [38] L. Shen et al. Complete trapping of electromagnetic radiation using surface magnetoplasmons. Opt. Lett., 40, 1853-1856(2015).

    [39] K. L. Tsakmakidis et al. Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering. Science, 356, 1260-1264(2017).

    [40] F. J. Garcia-Vidal, J. B. Pendry. Collective theory for surface enhanced Raman scattering. Phys. Rev. Lett., 77, 1163-1166(1996).

    [41] K. Kneipp et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett., 78, 1667-1670(1997).

    [42] A. Campion, P. Kambhampati. Surface-enhanced Raman scattering. Chem. Soc. Rev., 27, 241-250(1998).

    [43] C. K. Chen et al. Surface-enhanced second-harmonic generation and Raman scattering. Phys. Rev. B, 27, 1965-1979(1983).

    [44] A. Bouhelier et al. Near-field second-harmonic generation induced by local field enhancement. Phys. Rev. Lett., 90, 013903(2003).

    [45] U. K. Chettiar, N. Engheta. Optical frequency mixing through nanoantenna enhanced difference frequency generation: metatronic mixer. Phys. Rev. B, 86, 075405(2012).

    [46] S. Kim et al. High-harmonic generation by resonant plasmon field enhancement. Nature, 453, 757-760(2008).

    [47] J. A. Schuller et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater., 9, 193-204(2010).

    [48] H. A. Atwater, A. Polman. Plasmonics for improved photovoltaic devices. Nat. Mater., 9, 205-213(2010).

    [49] D. M. Pozar. Microwave Engineering,(2005).

    [50]

    [51]

    [52] M. G. Silveirinha. Topological classification of Chern-type insulators by means of the photonic green function. Phys. Rev. B, 97, 115146(2018).

    [53] V. M. Agranovich, V. Ginzburg. Crystal Optics with Spatial Dispersion, and Excitons(1984).

    [54] S. A. H. Gangaraj, G.W. Hanson. Topologically protected unidirectional surface states in biased ferrites: duality and application to directional couplers. IEEE Antennas Wireless Propag. Lett., 16, 449-452(2017).

    [55] F. R. Prudêncio, M. G. Silveirinha. First principles calculation of topological invariants of non-Hermitian photonic crystals. Commun. Phys., 3, 221(2020).

    [56] M. G. Silveirinha. Topological theory of non-Hermitian photonic systems. Phys. Rev. B, 99, 125155(2019).

    [57] F. R. Prudêncio, M. G. Silveirinha. Ill-defined topological phases in dispersive photonic crystals(2021).

    [58]

    David E. Fernandes, Ricardo A. M. Pereira, Sylvain Lannebère, Tiago A. Morgado, Mário G. Silveirinha. Experimental verification of ill-defined topologies and energy sinks in electromagnetic continua[J]. Advanced Photonics, 2022, 4(3): 035003
    Download Citation