• Chinese Journal of Lasers
  • Vol. 49, Issue 1, 0101001 (2022)
Linyong Yang1、2、3, Bin Zhang1、2、3, and Jing Hou1、2、3、*
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan 410073, China
  • 2State Key Laboratory of Pulsed Power Laser Technology, Changsha, Hunan 410073, China
  • 3Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha, Hunan 410073, China
  • show less
    DOI: 10.3788/CJL202249.0101001 Cite this Article Set citation alerts
    Linyong Yang, Bin Zhang, Jing Hou. Progress on High-Power Supercontinuum Laser Sources at 3-5 μm[J]. Chinese Journal of Lasers, 2022, 49(1): 0101001 Copy Citation Text show less
    References

    [1] Agrawal G P[M]. Nonlinear fiber optics(2007).

    [2] Hasegawa A. Generation of a train of soliton pulses by induced modulational instability in optical fibers[J]. Optics Letters, 9, 288-290(1984).

    [3] van Simaeys G E, Emplit P, Haelterman M. Observation of modulational instability recurrence in optical fibers[C], WB5(2001).

    [4] Alfano R R, Shapiro S L. Observation of self-phase modulation and small-scale filaments in crystals and glasses[J]. Physical Review Letters, 24, 592(1970).

    [5] Ippen E P, Shank C V, Gustafson T K. Self-phase modulation of picosecond pulses in optical fibers[J]. Applied Physics Letters, 24, 190-192(1974).

    [6] Stolen R H, Lin C. Self-phase-modulation in silica optical fibers[J]. Physical Review A, 17, 1448-1453(1978).

    [7] Genty G, Lehtonen M, Ludvigsen H. Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses[J]. Optics Express, 12, 4614-4624(2004).

    [8] Agrawal G P, Baldeck P L, Alfano R R. Modulation instability induced by cross-phase modulation in optical fibers[J]. Physical Review A, 39, 3406-3413(1989).

    [9] Coen S, Chau A H L, Leonhardt R et al. Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers[J]. Journal of the Optical Society of America B, 19, 753-764(2002).

    [10] Dianov E M, Bufetov I A, Mashinsky V M et al. Raman fibre lasers based on heavily GeO2-doped fibres[J]. Quantum Electronics, 35, 435-441(2005).

    [11] Chen H W, Jin A J, Yang W Q et al. Generation of a compact high-power high-efficiency normal-dispersion pumping supercontinuum in silica photonic crystal fiber pumped with a 1064-nm picosecond pulse[J]. Chinese Physics B, 22, 064211(2013).

    [12] Yatsenko Y P, Pryamikov A D, Mashinsky V M et al. Four-wave mixing with large Stokes shifts in heavily Ge-doped silica fibers[J]. Optics Letters, 30, 1932-1934(2005).

    [13] Kudlinski A, Pureur V, Bouwmans G et al. Experimental investigation of combined four-wave mixing and Raman effect in the normal dispersion regime of a photonic crystal fiber[J]. Optics Letters, 33, 2488-2490(2008).

    [14] Li Y, Hou J, Jiang Z F et al. Cascaded four-wave mixing generation with hybrid pump[C], JTh2A.03(2013).

    [15] Hou J, Li Y, Leng J Y et al. Cascaded four-wave mixing generation in photonic crystal fibers[J]. Applied Physics B, 113, 611-618(2013).

    [16] Sorokina I T, Dvoyrin V V, Tolstik N et al. Mid-IR ultrashort pulsed fiber-based lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 99-110(2014).

    [17] Tang Y X, Wright L G, Charan K et al. Generation of intense 100 fs solitons tunable from 2 μm to 4.3 μm in fluoride fiber[J]. Optica, 3, 948-951(2016).

    [18] Dudley J M, Taylor J R[M]. Supercontinuum generation in optical fibers(2009).

    [19] Mandon J, Guelachvili G, Picqué N. Fourier transform spectroscopy with a laser frequency comb[J]. Nature Photonics, 3, 99-102(2009).

    [20] Keilmann F, Gohle C, Holzwarth R. Time-domain mid-infrared frequency-comb spectrometer[J]. Optics Letters, 29, 1542-1544(2004).

    [21] Schliesser A, Brehm M, Keilmann F et al. Frequency-comb infrared spectrometer for rapid, remote chemical sensing[J]. Optics Express, 13, 9029-9038(2005).

    [22] Udem T. Frequency comb benefits[J]. Nature Photonics, 3, 82-84(2009).

    [23] Picqué N, Hänsch T W. Frequency comb spectroscopy[J]. Nature Photonics, 13, 146-157(2019).

    [24] Kaminski C F, Watt R S, Elder A D et al. Supercontinuum radiation for applications in chemical sensing and microscopy[J]. Applied Physics B, 92, 367-378(2008).

    [25] Kasparian J, Rodriguez M, Me jean G et al. White-light filaments for atmospheric analysis[J]. Science, 301, 61-64(2003).

    [26] Kumar M, Islam M N, Terry F L et al. Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source[J]. Applied Optics, 51, 2794-2807(2012).

    [27] Cezard N, Dobroc A, Canat G et al. Supercontinuum laser absorption spectroscopy in the mid-infrared range for identification and concentration estimation of a multi-component atmospheric gas mixture[J]. Proceedings of SPIE, 8182, 81820V(2011).

    [28] Th Bekman H H P, van den Heuvel J C, van Putten F J M et al. Development of a mid-infrared laser for study of infrared countermeasures techniques[J]. Proceedings of SPIE, 5615, 27-38(2004).

    [29] Méjean G, Kasparian J, Salmon E et al. Towards a supercontinuum-based infrared lidar[J]. Applied Physics B, 77, 357-359(2003).

    [30] Israelsen N M, Petersen C R, Barh A et al. Real-time high-resolution mid-infrared optical coherence tomography[J]. Light, Science & Applications, 8, 11(2019).

    [31] Labruyère A, Tonello A, Couderc V et al. Compact supercontinuum sources and their biomedical applications[J]. Optical Fiber Technology, 18, 375-378(2012).

    [32] Seddon A B. Potential for using mid-infrared light for non-invasive, early-detection of skin cancers in vivo[J]. Proceedings of SPIE, 8576, 85760V(2013).

    [33] Borondics F, Jossent M, Sandt C et al. Supercontinuum-based Fourier transform infrared spectromicroscopy[J]. Optica, 5, 378-381(2018).

    [34] Gasser C, Kilgus J, Harasek M et al. Enhanced mid-infrared multi-bounce ATR spectroscopy for online detection of hydrogen peroxide using a supercontinuum laser[J]. Optics Express, 26, 12169-12179(2018).

    [35] Mikkonen T, Amiot C, Aalto A et al. Broadband cantilever-enhanced photoacoustic spectroscopy in the mid-IR using a supercontinuum[J]. Optics Letters, 43, 5094-5097(2018).

    [36] Alexander V V, Kulkarni O P, Kumar M et al. Modulation instability initiated high power all-fiber supercontinuum lasers and their applications[J]. Optical Fiber Technology, 18, 349-374(2012).

    [37] Yang L Y, Zhang B, Yin K et al. 0.6-3.2 μm supercontinuum generation in a step-index Germania-core fiber using a 4.4 kW peak-power pump laser[J]. Optics Express, 24, 12600-12606(2016).

    [38] Qi X, Chen S, Li Z et al. High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016 nm[J]. Optics Letters, 43, 1019-1022(2018).

    [39] Hagen C L, Walewski J W, Sanders S T. Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source[J]. IEEE Photonics Technology Letters, 18, 91-93(2006).

    [40] Michalska M, Mikolajczyk J, Wojtas J et al. Mid-infrared, super-flat, supercontinuum generation covering the 2-5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses[J]. Scientific Reports, 6, 39138(2016).

    [41] Yin K, Zhu R Z, Zhang B et al. Ultrahigh-brightness, spectrally-flat, short-wave infrared supercontinuum source for long-range atmospheric applications[J]. Optics Express, 24, 20010-20020(2016).

    [42] Swiderski J. High-power mid-infrared supercontinuum sources: current status and future perspectives[J]. Progress in Quantum Electronics, 38, 189-235(2014).

    [43] Wang J S, Vogel E M, Snitzer E. Tellurite glass: a new candidate for fiber devices[J]. Optical Materials, 3, 187-203(1994).

    [44] Kumar V V R K, George A K, Knight J C et al. Tellurite photonic crystal fiber[J]. Optics Express, 11, 2641-2645(2003).

    [45] Domachuk P, Wolchover N A, Cronin-Golomb M et al. Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs[J]. Optics Express, 16, 7161-7168(2008).

    [46] Lin A X, Zhang A D, Bushong E J et al. Solid-core tellurite glass fiber for infrared and nonlinear applications[J]. Optics Express, 17, 16716-16721(2009).

    [47] Kanamori T, Sakaguchi S. Preparation of elevated NA fluoride optical fibers[J]. Japanese Journal of Applied Physics, 25, L468-L470(1986).

    [48] Carter S F, Williams J R, Moore M W et al. Prospects for ultra-low-loss fluoride fibres at BTRL[J]. Journal of Non-Crystalline Solids, 140, 153-158(1992).

    [49] Massicott J F, Brierley M C, Wyatt R et al. Low threshold, diode pumped operation of a green, Er3+ doped fluoride fibre laser[J]. Electronics Letters, 29, 2119-2120(1993).

    [50] Adam J L. Fluoride glass research in France: fundamentals and applications[J]. Journal of Fluorine Chemistry, 107, 265-270(2001).

    [51] Bei J F, Monro T M, Hemming A et al. Reduction of scattering loss in fluoroindate glass fibers[J]. Optical Materials Express, 3, 1285-1301(2013).

    [52] Vasil’Ev A V, Devyatykh G G, Dianov E M et al. Two-layer chalcogenide-glass optical fibers with optical losses below 30 dB/km[J]. Quantum Electronics, 23, 89-90(1993).

    [53] Hilton A R, Kemp S[M]. Chalcogenide glasses for infrared optics(2010).

    [54] Tao G M, Ebendorff-Heidepriem H, Stolyarov A M et al. Infrared fibers[J]. Advances in Optics and Photonics, 7, 379-458(2015).

    [55] Martinez R A, Plant G, Guo K W et al. Mid-infrared supercontinuum generation from 1.6 μm to >11 μm using concatenated step-index fluoride and chalcogenide fibers[J]. Optics Letters, 43, 296-299(2018).

    [56] Yan B, Huang T, Zhang W et al. Generation of Watt-level supercontinuum covering 2-6.5 μm in an all-fiber structured infrared nonlinear transmission system[J]. Optics Express, 29, 4048-4057(2021).

    [57] Yang L Y, Li Y, Zhang B et al. 30-W supercontinuum generation based on ZBLAN fiber in an all-fiber configuration[J]. Photonics Research, 7, 1061-1065(2019).

    [58] Xia C N, Xu Z, Islam M N et al. 10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 422-434(2009).

    [59] Yang W, Zhang B, Xue G et al. Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system[J]. Optics Letters, 39, 1849-1852(2014).

    [60] Liu K, Liu J, Shi H X et al. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power[J]. Optics Express, 22, 24384-24391(2014).

    [61] Zheng Z J, Ouyang D Q, Zhao J Q et al. Scaling all-fiber mid-infrared supercontinuum up to 10 W-level based on thermal-spliced silica fiber and ZBLAN fiber[J]. Photonics Research, 4, 135-139(2016).

    [62] Yin K, Zhang B, Yang L et al. 15.2 W spectrally flat all-fiber supercontinuum laser source with >1 W power beyond 3.8 μm[J]. Optics Letters, 42, 2334-2337(2017).

    [63] Yao C F, Jia Z X, Li Z R et al. High-power mid-infrared supercontinuum laser source using fluorotellurite fiber[J]. Optica, 5, 1264-1270(2018).

    [64] Gauthier J C, Fortin V, Duval S et al. In-amplifier mid-infrared supercontinuum generation[J]. Optics Letters, 40, 5247-5250(2015).

    [65] Gauthier J C, Robichaud L R, Fortin V et al. Mid-infrared supercontinuum generation in fluoride fiber amplifiers: current status and future perspectives[J]. Applied Physics B, 124, 1-14(2018).

    [66] Yang L Y, Zhang B, Yin K et al. Spectrally flat supercontinuum generation in a holmium-doped ZBLAN fiber with record power ratio beyond 3 μm[J]. Photonics Research, 6, 417-421(2018).

    [67] Yang L Y, Zhang B, Wu T Y et al. Watt-level mid-infrared supercontinuum generation from 2.7 μm to 4.25 μm in an erbium-doped ZBLAN fiber with high slope efficiency[J]. Optics Letters, 43, 3061-3064(2018).

    [68] Xia C N, Kumar M, Kulkarni O P et al. Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping[J]. Optics Letters, 31, 2553-2555(2006).

    [69] Swiderski J, Michalska M. High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared[J]. Optics Letters, 39, 910-913(2014).

    [70] Duhant M, Renard W, Canat G et al. Improving mid-infrared supercontinuum generation efficiency by pumping a fluoride fiber directly into the anomalous regime at 1995 nm[C](2011).

    [71] Eckerle M, Kieleck C, ????s'widerski J et al. Actively Q-switched and mode-locked Tm3+-doped silicate 2 μm fiber laser for supercontinuum generation in fluoride fiber[J]. Optics Letters, 37, 512-514(2012).

    [72] Yang W, Zhang B, Yin K et al. High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system[J]. Optics Express, 21, 19732-19742(2013).

    [73] Kulkarni O P, Alexander V V, Kumar M et al. Supercontinuum generation from ~1.9 μm to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier[J]. Journal of the Optical Society of America B, 28, 2486-2498(2011).

    [74] Liu J, Liu K, Shi H X et al. High-power all-fiber mid-infrared supercontinuum laser source[J]. Chinese Journal of Lasers, 41, 0902004(2014).

    [75] Yin K, Zhang B, Yao J et al. Highly stable, monolithic, single-mode mid-infrared supercontinuum source based on low-loss fusion spliced silica and fluoride fibers[J]. Optics Letters, 41, 946-949(2016).

    [76] Yang L Y, Zhang B, He X et al. 20.6 W mid-infrared supercontinuum generation in ZBLAN fiber with spectrum of 1.9-4.3 μm[J]. Journal of Lightwave Technology, 38, 5122-5127(2020).

    [77] Qin G S, Yan X, Kito C et al. Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber[J]. Applied Physics Letters, 95, 161103(2009).

    [78] Abeeluck A K, Headley C, Jørgensen C G. High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser[J]. Optics Letters, 29, 2163-2165(2004).

    [79] Xia C N, Kumar M, Cheng M Y et al. Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 789-797(2007).

    [80] Liu K, Liu J, Shi H X et al. 24.3 W mid-infrared supercontinuum generation from a single-mode ZBLAN fiber pumped by thulium-doped fiber amplifier[C], AM3A.6(2014).

    [81] Cozic S, Boivinet S, Pierre C et al. Splicing fluoride glass and silica optical fibers[J]. EPJ Web of Conferences, 215, 04003(2019).

    [82] Yang L, Zhang B, He X et al. High-power mid-infrared supercontinuum generation in a fluoroindate fiber with over 2 W power beyond 3.8 μm[J]. Optics Express, 28, 14973-14979(2020).

    [83] Faucher D, Bernier M, Androz G et al. 20 W passively cooled single-mode all-fiber laser at 2.8 μm[J]. Optics Letters, 36, 1104-1106(2011).

    [84] Fortin V, Bernier M, Bah S T et al. 30 W fluoride glass all-fiber laser at 2.94 μm[J]. Optics Letters, 40, 2882-2885(2015).

    [85] Aydin Y O, Fortin V, Vallée R et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 43, 4542-4545(2018).

    [86] Aydin Y O, Maes F, Fortin V et al. Endcapping of high-power 3 μm fiber lasers[J]. Optics Express, 27, 20659-20669(2019).

    [87] Deng K X, Yang L Y, Zhang B et al. Mid-infrared supercontinuum generation in an all-fiberized Er-doped ZBLAN fiber amplifier[J]. Optics Letters, 45, 6454-6457(2020).

    [88] Yang L, Zhang B, Jin D et al. All-fiberized, multi-watt 2-5-μm supercontinuum laser source based on fluoroindate fiber with record conversion efficiency[J]. Optics Letters, 43, 5206-5209(2018).

    [89] Théberge F, Daigle J F, Vincent D et al. Mid-infrared supercontinuum generation in fluoroindate fiber[J]. Optics Letters, 38, 4683-4685(2013).

    [90] Swiderski J, Michalska M, Kieleck C et al. High power supercontinuum generation in fluoride fibers pumped by 2 μm pulses[J]. IEEE Photonics Technology Letters, 26, 150-153(2014).

    [91] Salem R, Jiang Z, Liu D et al. Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 μm[J]. Optics Express, 23, 30592-30602(2015).

    [92] Michalska M, Grzes P, Hlubina P et al. Mid-infrared supercontinuum generation in a fluoroindate fiber with 1.4 W time-averaged power[J]. Laser Physics Letters, 15, 045101(2018).

    [93] Gauthier J C, Fortin V, Carrée J Y et al. Mid-IR supercontinuum from 2.4 μm to 5.4 μm in a low-loss fluoroindate fiber[J]. Optics Letters, 41, 1756-1759(2016).

    [94] Théberge F, Bérubé N, Poulain S et al. Watt-level and spectrally flat mid-infrared supercontinuum in fluoroindate fibers[J]. Photonics Research, 6, 609-613(2018).

    [95] Liang S J, Xu L, Fu Q et al. 295-kW peak power picosecond pulses from a thulium-doped-fiber MOPA and the generation of watt-level >2.5-octave supercontinuum extending up to 5 μm[J]. Optics Express, 26, 6490-6498(2018).

    [96] Yehouessi J P, Vidal S, Carrée J Y et al. 3 W Mid-IR supercontinuum extended up to 4.6 μm based on an all-PM thulium doped fiber gain-switch laser seeding an InF3 fiber[J]. Proceedings of SPIE, 10902, 1090207(2019).

    [97] Scurria G, Manek-Hönninger I, Carré J Y et al. 7 W mid-infrared supercontinuum generation up to 4.7 μm in an indium-fluoride optical fiber pumped by a high-peak power thulium-doped fiber single-oscillator[J]. Optics Express, 28, 7672-7677(2020).

    [98] Wu T Y, Yang L Y, Dou Z Y et al. Ultra-efficient, 10-watt-level mid-infrared supercontinuum generation in fluoroindate fiber[J]. Optics Letters, 44, 2378(2019).

    [99] Jia Z X, Yao C F, Li Z R et al. Progress on novel high power mid-infrared fiber laser materials and supercontinuum laser[J]. Chinese Journal of Lasers, 46, 0508006(2019).

    [100] Gattass R R, Brandon Shaw L, Nguyen V Q et al. All-fiber chalcogenide-based mid-infrared supercontinuum source[J]. Optical Fiber Technology, 18, 345-348(2012).

    [101] Théberge F, Bérubé N, Poulain S et al. Infrared supercontinuum generated in concatenated InF3 and As2Se3 fibers[J]. Optics Express, 26, 13952-13960(2018).

    [102] Robichaud L R, Duval S, Pleau L P et al. High-power supercontinuum generation in the mid-infrared pumped by a soliton self-frequency shifted source[J]. Optics Express, 28, 107-115(2020).

    Linyong Yang, Bin Zhang, Jing Hou. Progress on High-Power Supercontinuum Laser Sources at 3-5 μm[J]. Chinese Journal of Lasers, 2022, 49(1): 0101001
    Download Citation