• Chinese Journal of Lasers
  • Vol. 49, Issue 1, 0101001 (2022)
Linyong Yang1、2、3, Bin Zhang1、2、3, and Jing Hou1、2、3、*
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan 410073, China
  • 2State Key Laboratory of Pulsed Power Laser Technology, Changsha, Hunan 410073, China
  • 3Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha, Hunan 410073, China
  • show less
    DOI: 10.3788/CJL202249.0101001 Cite this Article Set citation alerts
    Linyong Yang, Bin Zhang, Jing Hou. Progress on High-Power Supercontinuum Laser Sources at 3-5 μm[J]. Chinese Journal of Lasers, 2022, 49(1): 0101001 Copy Citation Text show less
    Typical fiber loss profiles in long-wavelength side for common fiber materials[42]
    Fig. 1. Typical fiber loss profiles in long-wavelength side for common fiber materials[42]
    Technical schemes of high power MIR-SC fiber lasers. (a) Based on passive nonlinear fiber; (b) based on fiber amplifier
    Fig. 2. Technical schemes of high power MIR-SC fiber lasers. (a) Based on passive nonlinear fiber; (b) based on fiber amplifier
    SC laser spectrum at output power of 10.5 W[58]
    Fig. 3. SC laser spectrum at output power of 10.5 W[58]
    SC laser spectra obtained by directly pumping ZBLAN fiber with 2 μm pulsed fiber laser[70]
    Fig. 4. SC laser spectra obtained by directly pumping ZBLAN fiber with 2 μm pulsed fiber laser[70]
    Spectra of SC laser with output power of 13 W[59]
    Fig. 5. Spectra of SC laser with output power of 13 W[59]
    Spectra of SC laser with output power of 21.8 W[60]
    Fig. 6. Spectra of SC laser with output power of 21.8 W[60]
    All-fiber SC laser[75]. (a) Schematic of experimental setup; (b) microscope photo of fusion splicing joint; photos of end surfaces of (c) silica and (d) ZBLAN fibers after pulling apart
    Fig. 7. All-fiber SC laser[75]. (a) Schematic of experimental setup; (b) microscope photo of fusion splicing joint; photos of end surfaces of (c) silica and (d) ZBLAN fibers after pulling apart
    Experimental layout of spectrally-flat MIR-SC laser[73]
    Fig. 8. Experimental layout of spectrally-flat MIR-SC laser[73]
    Output spectrum of spectrally-flat MIR-SC laser[73]
    Fig. 9. Output spectrum of spectrally-flat MIR-SC laser[73]
    SC laser spectra for different output powers[62]
    Fig. 10. SC laser spectra for different output powers[62]
    MIR-SC laser with average power of 30 W[57]. (a) Structural diagram; (b) spectra
    Fig. 11. MIR-SC laser with average power of 30 W[57]. (a) Structural diagram; (b) spectra
    MIR-SC laser spectra for average power of 20.6 W[76]
    Fig. 12. MIR-SC laser spectra for average power of 20.6 W[76]
    Er3+∶ZBLAN fiber amplifier[64]. (a) Layout of experimental setup; (b) spectral characteristics of SC laser
    Fig. 13. Er3+∶ZBLAN fiber amplifier[64]. (a) Layout of experimental setup; (b) spectral characteristics of SC laser
    Output spectra for different Er3+∶ZBLAN fiber lengths[65]
    Fig. 14. Output spectra for different Er3+∶ZBLAN fiber lengths[65]
    Ho3+∶ZBLAN fiber amplifier[66]. (a) Layout of experimental setup; (b) SC spectra
    Fig. 15. Ho3+∶ZBLAN fiber amplifier[66]. (a) Layout of experimental setup; (b) SC spectra
    Output spectra of MIR-SC laser based on EDZFA[67]
    Fig. 16. Output spectra of MIR-SC laser based on EDZFA[67]
    Er3+∶ZBLAN all-fiber amplifier[87]. (a) Layout of experimental setup; (b) SC spectral evolution
    Fig. 17. Er3+∶ZBLAN all-fiber amplifier[87]. (a) Layout of experimental setup; (b) SC spectral evolution
    0.75-5.1 μm SC laser[95]. (a) Layout of experimental setup; (b) SC spectra
    Fig. 18. 0.75-5.1 μm SC laser[95]. (a) Layout of experimental setup; (b) SC spectra
    Experiment of watt level SC laser based on InF3 fiber[88]. (a) Experimental setup; (b) SC laser spectra
    Fig. 19. Experiment of watt level SC laser based on InF3 fiber[88]. (a) Experimental setup; (b) SC laser spectra
    Spectra of SC laser based on InF3 fiber for different pump powers[96]
    Fig. 20. Spectra of SC laser based on InF3 fiber for different pump powers[96]
    Spectra of 10 W level MIR SC laser pumped by 1960 nm picosecond laser[98]
    Fig. 21. Spectra of 10 W level MIR SC laser pumped by 1960 nm picosecond laser[98]
    MIR-SC laser spectra for average power of 11.8 W[82]
    Fig. 22. MIR-SC laser spectra for average power of 11.8 W[82]
    Spectra of 19.6 W MIR-SC laser based on tellurite fiber[99]
    Fig. 23. Spectra of 19.6 W MIR-SC laser based on tellurite fiber[99]
    Spectra of watt-level SC laser based on As2S3 fiber[56]
    Fig. 24. Spectra of watt-level SC laser based on As2S3 fiber[56]
    ConditionSub-picosecond pulsePicosecond and longer pulse
    Normal group velocity dispersionSelf-phase modulation, four wave mixing, and Raman scatteringFour wave mixing, Raman scattering, and self-phase modulation
    Anomalous group velocity dispersionSoliton fission, Raman induced SFSS, and dispersive wave generationModulation instability, Raman induced SFSS, and dispersive wave generation
    Table 1. Dominant nonlinear effects under different dispersion regimes and different pump pulse durations [36]
    CharacteristicParameterSilicaTelluriteFluorideChalcogenide
    AlF3ZBLANInF3As2S3As2Se3
    Dispersion characteristicMaterial refractive index1.45~21.461.48-1.531.47-1.532.4152.83
    Typical bulk ZDW /μm1.262.13-1.71~1.84.817.5
    Loss characteristicPhonon energy /cm-11100800-550-350-
    Bulk transmission window /μm0.2-3.50.4-5.0-0.3-7.50.3-9.50.8-7.01-15
    Fiber transmission window /μm0.4-2.5-0.3-3.50.5-4.50.5-5.51.0-6.01.5-10.0
    Nonlinear characteristicRaman frequency shift /THz13.221-~17.7-10.2~7.2
    Self-focus threshold at 2 μm /MW15.10.57-12120.080.03
    Nonlinear refractive index /(10-20 m2·W-1)2.619-3.3-3001500
    Thermal characteristicTransition temperature /℃1000300367260300185178
    Thermal conductivity /(W·m-1·K-1)1.381.25-0.628-0.2-
    Thermal expansion coefficient /(10-6 K-1)0.5512-1718.617.2-14-
    Table 2. Typical physical and chemical parameters of common optical fibers [54]
    YearCentral wavelength of seed laserPulse durationPulse repetition rateAmplifier typeOutput power of fiber amplifierCoupling methodCoupling efficiencySC characteristicRef.
    Spectral range /μmPower /WConversion efficiency /%
    20091550 nm400 ps3.33 MHzEYDFA20.2 WMechanical splice>60%0.8-4.010.552.0[58]
    20131960 nm26.7 ps29.4 MHzLMA-TDFA31.5 WMechanical splice90% @1.15 W, 66% @31.5 W1.9-4.31341.3[59]
    20142.0-2.5 μmSM-TDFAMechanical splice80%1.9-3.516.2-[74]
    20141963 nm24 ps93.6 MHzSM-TDFA42 WMechanical splice70%-80%1.9-3.821.851.9[60]
    20161950 nm12.6 ps75.4 MHzLMA-TDFA16.3 WFusion splice80.2%1.9-4.110.6765.3[61]
    20172.0-2.7 μm1 ns6 MHzLMA-TDFA30.1 WFusion splice1.9-4.2515.250.5[62]
    20191.9-2.6 μm3 ns3 MHzSM-TDFA41.9 WFusion splice94.4% @2000 nm1.9-3.3530.073.1[57]
    20202.0-2.6 μm1 ns3 MHzSM-TDFA37.9 WFusion splice94.2% @2000 nm1.92-4.2920.654.3[57]
    Table 3. Parameters of SC lasers with output power >10 W based on undoped fluoride fibers
    YearSeed laser pulse durationPulse repetition rateAmplifier typePump wavelengthOutput power of fiber amplifierCore diameter /μmCoupling methodSC characteristicRef.
    20 dB spectral range /μmPower /WConversion efficiency /%
    201370 fsOPA3.4 μm16Lens coupling2.7-4.70.0001-[89]
    2016400 ps2 kHzEDZFA2.7-3.1 μm21.8 mW13.5Lens coupling/fusion splice2.5-5.30.00837.4[93]
    201670 ps1 kHzOPG2.02 μm9Lens coupling1.9-5.30.008-[40]
    2018400 ps20 kHzEDZFA10Lens coupling/fusion splice2.75-5.400.145-[65]
    2015100 fs50 MHzTDFA1.9-2.2 μm570 mW7Lens coupling1.25-4.200.2543.9[91]
    201850 ps1 MHzTDFA1.9-2.7 μm2.3 W9.5Mechanical splice1.7-4.91.043.5[94]
    20181 ns100 kHzTDFA2.0-2.7 μm2.27 W7.5Fusion splice1.60-5.071.3559.5[88]
    1 ns1 MHzTDFA2.0-2.7 μm6.41 W2.0-4.84.0663.3
    201835 ps1 MHzTDFA1950 nm6.36 W9Lens coupling0.75-4.91.7627.7[95]
    2019400 ps200 kHzTDFA1960 nm4.9 W7.5Lens coupling1.90-4.65360[96]
    202090 ns60 kHzTDFA2 μm15 W7.5Lens coupling2.0-3.9746.7[97]
    201960 ps33 MHzTDFA2 μm17 W7.5Fusion splice1.85-4.5311.366.5[98]
    20201 ns1.5 MHzTDFA2.0-2.7 μm18.3 W7.5Fusion splice1.96-4.7711.864.5[82]
    Table 4. Parameters of SC lasers based on undoped InF3 fibers
    Linyong Yang, Bin Zhang, Jing Hou. Progress on High-Power Supercontinuum Laser Sources at 3-5 μm[J]. Chinese Journal of Lasers, 2022, 49(1): 0101001
    Download Citation