• Laser & Optoelectronics Progress
  • Vol. 57, Issue 5, 050006 (2020)
Yilan Chen1、2、**, Xiaolei Zhu1、2、*, Junxuan Zhang3, Jiqiao Liu2、3, and Weibiao Chen1、2
Author Affiliations
  • 1Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Laboratory of Space Laser Engineering, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    DOI: 10.3788/LOP57.050006 Cite this Article Set citation alerts
    Yilan Chen, Xiaolei Zhu, Junxuan Zhang, Jiqiao Liu, Weibiao Chen. Development of Pulsed Single-Frequency 2 μm All-Solid-State Laser[J]. Laser & Optoelectronics Progress, 2020, 57(5): 050006 Copy Citation Text show less
    References

    [1] Shuman T, Hovis F E, Singh U N et al. Development of a TRL-5 conductively-cooled 2-micron laser transmitter for coherent Doppler wind lidar system[J]. Proceedings of SPIE, 8872, 887205(2013).

    [2] Koch G J, Barnes B W, Petros M et al. Coherent differential absorption lidar measurements of CO2[J]. Applied Optics, 43, 5092-5099(2004).

    [3] Engin D, Chuang T, Litvinovitch S et al. Compact, highly efficient, single-frequency 25 W, 2051 nm Tm fiber-based MOPA for CO2 trace-gas laser space transmitter[J]. Proceedings of SPIE, 10406, 1040606(2017).

    [4] Singh U N, Kavaya M, Koch G et al. Solid-state 2-micron laser transmitter advancement for wind and carbon dioxide measurements from ground, airborne, and space-based lidar systems[J]. Proceedings of SPIE, 7111, 711104(2008).

    [5] Singh U N, Walsh B M, Yu J R et al. Twenty years of Tm∶Ho∶YLF and LuLiF laser development for global wind and carbon dioxide active remote sensing[J]. Optical Materials Express, 5, 827-837(2015).

    [6] Wulfmeyer V, Randall M, Brewer A et al. 2-μm Doppler lidar transmitter with high frequency stability and low chirp[J]. Optics Letters, 25, 1228-1230(2000).

    [7] Henriksson M, Tiihonen M, Pasiskevicius V et al. ZnGeP2 parametric oscillator pumped by a linewidth-narrowed parametric 2 μm source[J]. Optics Letters, 31, 1878-1880(2006).

    [8] Wang Q, Geng J H, Jiang S B. 2-μm fiber laser sources for sensing[J]. Optical Engineering, 53, 061609(2014).

    [9] Henriksson M, Tiihonen M, Pasiskevicius V et al. Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator[J]. Applied Physics B, 88, 37-41(2007).

    [10] Mingareev I, Weirauch F, Olowinsky A et al. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics & Laser Technology, 44, 2095-2099(2012).

    [11] Mamuschkin V. Olowinsky A, van der Straeten K, et al. Laser transmission welding of absorber-free thermoplastics using dynamic beam superposition[J]. Proceedings of SPIE, 9356, 93560Y(2015).

    [12] Fried N M, Murray K E. High-power thulium fiber laser ablation of urinary tissues at 1.94 μm[J]. Journal of Endourology, 19, 25-31(2005).

    [13] Theisen D, Ott V, Bernd H W et al. CW high power IR-laser at 2 μm for minimally invasive surgery. [C]//Therapeutic Laser Applications and Laser-Tissue Interactions, June 22, 2003, Munich, Germany. Washington, D.C.: OSA, 5142, 96-100(2003).

    [14] Girard B, Yu D, Armstrong M R et al. Effects of femtosecond laser irradiation on osseous tissues[J]. Lasers in Surgery and Medicine, 39, 273-285(2007).

    [15] Guo J, He G Y, Zhang B F et al. Compact Efficient 2.1-μm intracavity MgO∶PPLN OPO with a VBG output coupler[J]. IEEE Photonics Technology Letters, 27, 573-576(2015).

    [16] Chen F, Yao B Q, Yuan C et al. Diode-pumped single-frequency Tm∶YAG laser with double etalons[J]. Laser Physics, 21, 851-854(2011).

    [17] Gao C, Wang R, Lin Z et al. 2 μm single-frequency Tm∶YAG laser generated from a diode-pumped L-shaped twisted mode cavity[J]. Applied Physics B, 107, 67-70(2012).

    [18] Wang L, Gao C Q, Gao M W et al. Resonantly pumped monolithic nonplanar Ho∶YAG ring laser with high-power single-frequency laser output at 2122 nm[J]. Optics Express, 21, 9541-9546(2013).

    [19] Na Q X, Gao C Q, Wang Q et al. 1 kHz single-frequency 2.09 μm Ho∶YAG ring laser[J]. Applied Optics, 56, 7075-7078(2017).

    [20] Li M L, Gao L, Shi W Z et al. Progress in all-solid-state single-frequency lasers[J]. Laser & Optoelectronics Progress, 53, 080003(2016).

    [21] Ju Y L, Liu W, Yao B Q et al. Diode-pumped tunable single-longitudinal-mode Tm, Ho∶YAG twisted-mode laser[J]. Chinese Optics Letters, 13, 111403(2015). http://www.opticsjournal.net/Articles/Abstract?aid=OJ151210000043Yv2x57

    [22] Wang R, Gao C Q. Progress of 1.6 μm region single-frequency lasers[J]. Laser & Optoelectronics Progress, 50, 080006(2013).

    [23] Feng T, Zhang X J, Ren Z Y et al. Frequency stabilization laser based on non-planar ring oscillator[J]. Acta Optica Sinica, 33, 1014001(2013).

    [24] Schellhorn M. High-energy, in-band pumped Ho∶LLF MOPA system. [C]//Lasers, Sources, and Related Photonic Devices, January 29-February 1, 2012, San Diego, California, United States. Washington, D.C.: OSA, AW4A, 4(2012).

    [25] Yu J R, Singh U N, Barnes N P et al. 125-mJ diode-pumped injection-seeded Ho∶Tm∶YLF laser[J]. Optics Letters, 23, 780-782(1998).

    [26] Chen F, Liu X L, Yu L X et al. Diode-pumped single-frequency Tm∶GdVO4 laser at 1897.6 nm[J]. Laser Physics, 22, 152-154(2012).

    [27] Yang X T, Liu L, Zhang P et al. A resonantly pumped single-longitudinal mode Ho∶Sc2SiO5 laser with two Fabry-Perot etalons[J]. Applied Sciences, 7, 434(2017).

    [28] Chen F, Cai M, Zhang Y S. Room temperature diode-pumped single-frequency Tm∶LuYAG laser at 2023 nm[J]. Proceedings of SPIE, 10844, 108440E(2018).

    [29] Ii Y J, Chen F. A single-longitudinal-mode Tm, Ho∶YAG laser[J]. Proceedings of SPIE, 10457, 104572T(2017).

    [30] Wu J, Wu Y F, Dai T Y et al. Diode pumped high efficiency single-longitudinal-mode Tm, Ho∶YAP ring laser[J]. Optical Engineering, 58, 016116(2019).

    [31] Bai Y X, Yu J R, Petros M et al. High repetition rate and frequency stabilized Ho∶YLF laser for CO2 differential absorption lidar. [C]//Advanced Solid-State Photonics, February 1-4, 2009, Denver, Colorado, United States. Washington, D.C.: OSA, WB22(2009).

    [32] Dai T Y, Ju Y L, Yao B Q et al. Single-frequency, Q-switched Ho∶YAG laser at room temperature injection-seeded by two F-P etalons-restricted Tm, Ho∶YAG laser[J]. Optics Letters, 37, 1850-1852(2012).

    [33] Dai T Y, Ju Y L, Duan X M et al. Single-frequency, injection-seeded Q-switched operation of a resonantly pumped Ho∶YAlO3 laser at 2, 118 nm[J]. Applied Physics B, 111, 89-92(2013).

    [34] Hemmer M, Sánchez D, Jelínek M et al. 2-μm wavelength, high-energy Ho∶YLF chirped-pulse amplifier for mid-infrared OPCPA[J]. Optics Letters, 40, 451-454(2015).

    [35] Gibert F, Edouart D, Cénac C et al. 2-μm Ho emitter-based coherent DIAL for CO2 profiling in the atmosphere[J]. Optics Letters, 40, 3093-3096(2015).

    [36] Zhang Y X, Gao C Q, Wang Q et al. Single-frequency, injection-seeded Q-switched Ho∶YAG ceramic laser pumped by a 1.91 μm fiber-coupled LD[J]. Optics Express, 24, 27805-27811(2016).

    [37] Wang Q, Gao C Q, Na Q X et al. Single-frequency injection-seeded Q-switched Ho∶YAG laser[J]. Applied Physics Express, 10, 042701(2017).

    [38] Dai T Y, Wang Y P, Wu X S et al. An injection-seeded Q-switched Ho∶YLF laser by a tunable single-longitudinal-mode Tm, Ho∶YLF laser at 2050.96 nm[J]. Optics & Laser Technology, 106, 7-11(2018).

    [39] Zhang Y X, Gao C Q, Wang Q et al. High-repetition-rate single-frequency Ho∶YAG MOPA system[J]. Applied Optics, 57, 4222-4227(2018).

    [40] Zhang Y X, Gao C Q, Wang Q et al. High-energy, stable single-frequency Ho∶YAG ceramic amplifier system[J]. Applied Optics, 56, 9531-9535(2017).

    [41] Gibert F, Pellegrino J, Edouart D et al. 2-μm double-pulse single-frequency Tm∶fiber laser pumped Ho∶YLF laser for a space-borne CO2 lidar[J]. Applied Optics, 57, 10370-10379(2018).

    [42] Mizutani K, Ishii S, Aoki M et al. 2 μm Doppler wind lidar with a Tm∶fiber-laser-pumped Ho∶YLF laser[J]. Optics Letters, 43, 202-205(2018).

    [43] Singh U N. Williams-Byrd J A, Barnes N P, et al. Diode-pumped 2-μm solid state lidar transmitter for wind measurements[J]. Proceedings of SPIE, 3104, 173-178(1997).

    [44] Singh U N. Development of high-pulse energy Ho∶Tm∶YLF coherent transmitters[J]. Proceedings of SPIE, 3380, 70-74(1998).

    [45] Koch G J, Petros M, Yu J R et al. Precise wavelength control of a single-frequency pulsed Ho∶Tm∶YLF laser[J]. Applied Optics, 41, 1718-1721(2002).

    [46] Trieu B, Yu J R, Petros M et al. Design of a totally conductively cooled diode-pumped 2 μm-laser amplifier[J]. Proceedings of SPIE, 5887, 58870M(2005).

    [47] Yu J R, Trieu B C, Modlin E A et al. 1 J/pulse Q-switched 2 μm solid-state laser[J]. Optics Letters, 31, 462-464(2006).

    [48] Strauss H J, Koen W, Bollig C et al. Ho∶YLF & Ho∶LuLF slab amplifier system delivering 200 mJ, 2 μm single-frequency pulses[J]. Optics Express, 19, 13974-13979(2011).

    [49] Strauss H J, Preussler D. Esser M J D, et al. 330 mJ single-frequency Ho∶YLF slab amplifier[J]. Optics Letters, 38, 1022-1024(2013).

    [50] Shu S J, Yu T, Liu R T et al. Diode-side-pumped AO Q-switched Tm, Ho∶LuLF laser[J]. Chinese Optics Letters, 9, 091407(2011). http://www.opticsjournal.net/Articles/Abstract?aid=OJ110713000021nUqWtZ

    [51] Shu S J, Yu T, Zang H G et al. 2 μm diode-side-pumped injection-seeded solid-state laser[J]. Infrared and Laser Engineering, 40, 1442-1447(2011).

    [52] Liu Q, Yan X P, Fu X et al. 183 W TEM00 mode acoustic-optic Q-switched MOPA laser at 850 kHz[J]. Optics Express, 17, 5636-5644(2009).

    Yilan Chen, Xiaolei Zhu, Junxuan Zhang, Jiqiao Liu, Weibiao Chen. Development of Pulsed Single-Frequency 2 μm All-Solid-State Laser[J]. Laser & Optoelectronics Progress, 2020, 57(5): 050006
    Download Citation