• Chinese Journal of Quantum Electronics
  • Vol. 27, Issue 6, 641 (2010)
Ming-fang YI1、2、*, Pei WANG1, Xiao-lei WANG1, Xiao-lei WEN1, and Yong-hua LU1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    YI Ming-fang, WANG Pei, WANG Xiao-lei, WEN Xiao-lei, LU Yong-hua. Micro-nano-structure enhanced third-order optical nonlinearity and its development in all-optical tunable nonlinear devices[J]. Chinese Journal of Quantum Electronics, 2010, 27(6): 641 Copy Citation Text show less
    References

    [1] Bravo-Abad Jorge, Rodriguez Alejandro, et al. Enhanced nonlinear optics in photonic-crystal microcavities [J]. Opt. Expr., 2007, 15(24): 16161-16176.

    [2] Raether H. Surface Plasmons on Smooth and Routh Surfaces and on Gratings [M]. Heidelberg: Springer-Verlag, 1988.

    [3] Vahala K J. Optical microcavities [J]. Nature, 2003, 424: 839-846.

    [4] Armani D, Kippenberg T, et al. Ultra-high-Q toroid microcavity on a chip [J]. Nature, 2003, 421: 925-928.

    [5] Song B S, Noda S, Asano T, et al. Ultra-high-Q photonic double-heterostructure nanocavity [J]. Nature Mat., 2005, 4: 207-210.

    [6] Masaya Notomi, et al. Optical bistable switching action of Si high-Q photonic-crystal nanocavities [J]. Opt. Expr., 2005, 13(7): 2678-2687.

    [7] Kuramochi E, Notomi M, et al. Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect [J]. Appl. Phys. Lett., 2006, 88: 041112.

    [8] Hossein-Zadeh M, Levi A F J. Self-homodyne RF-optical LiNbO3 microdisk receiver [J]. Solid-State Electronics, 2005, 49: 1428-1434.

    [9] Noda S, Fujita M, Asano T. Spontaneous-emission control by photonic crystals and nanocavities [J]. Nature Phot., 2007, 1: 449-458.

    [10] Seo Jae Tae, Yang Qiguang, Kim Wan-Joong, et al. Optical nonlinearities of Au nanoparticles and Au/Ag coreshells [J]. Opt. Lett., 2009, 34(3): 307-309.

    [11] Wang Pei, Lu Yonghua, et al. Surface-enhanced optical nonlinearity of a gold film [J]. Opt. Comm., 2004, 229: 425-429.

    [12] Lee Y H, et al. Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z-scan measurements [J]. Appl. Phys. Lett., 2009, 95: 023105.

    [13] Deng Yan, Sun Youyi, Wang Pei, et al. Insitu synthesis and nonlinear optical properties of Ag nanocomposite polymer films [J]. Physica E, 2008, 40: 911.

    [14] Chen Xin, Zou Gang, Deng Yan, et al. Synthesis and nonlinear optical properties of nanometer-size silver-coated polydiacetylene composite vesicles [J]. Nanotechnology, 2008, 19: 195703.

    [15] Deng Yan, Sun Youyi, Wang Pei. Effect of Ag nanoparticle on optical properties of R6G dopped PMMA film [J]. Chin. Phys. Lett., 2007, 24(4): 954-956.

    [16] Yang Yong, Mamiko Hori, Tomokatsu Hayakawa, et al. Self-assembled 3-dimensional arrays of Au@SiO2 core-shell nanoparticles for enhanced optical nonlinearities [J]. Surface Science, 2005, 579: 215-224.

    [17] Porto J A, Mart n-Moreno L, Garc a-Vidal F J. Optical bistability in subwavelength slit apertures containing nonlinear media [J]. Phys. Rev. B, 2004, 70: 081402.

    [18] Min Changjun, Wang Pei, Jiao Xiaojin, et al. Optical bistability in subwavelength metallic grating coated by nonlinear material [J]. Opt. Expr., 2007, 15(19): 12368-12373.

    [19] Chen Junxue, Wang Pei, Wang Xiaolei, et al. Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure [J]. Appl. Phys. Lett., 2009, 94: 081117.

    [20] Lezec H J, Degiron A, Devaux E, et al. Beaming light from a subwavelength aperture [J]. Science, 2002, 297: 820.

    [21] Min Changjun, Wang Pei, Jiao Xiaojin, et al. Beam manipulating by metallic nano-optic lens containing nonlinear media [J]. Opt. Expr., 2007, 15(15): 9541-9546.

    [22] Min C, Wang P, Jiao X , et al. Beam focusing by metallic nano-slit array containing nonlinear material [J]. Appl. Phys. B, 2008, 90: 97-99.

    [23] Wang Xiaolei, Wang Pei, Min Changjun, et al. Modulation of splitting beam angle with metal-nonlinear optical material-metal (M-NL-M) array structure [J]. Chin. Phys. Lett., 2008, 25(12): 4375-4378.

    [25] Hu Xiaoyong, et al. Picosecond and low-power all-optical switching based on an organic photonic band gap microcavity [J]. Nature Photonics, 2008, 2(3): 185-189.

    [26] Min Changjun, Wang Pei, et al. All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials [J]. Opt. Lett., 2008, 33(8): 869-871.

    [27] Hamanaka Y, Fukuta K, Nakamura A. Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations [J]. Appl. Phys. Lett., 2004, 84: 4938-4940.

    [28] Hu Xiaoyong, Jiang Ping, Xin Cheng, et al. Nano-Ag:polymeric composite material for ultrafast photonic crystal all-optical switching [J]. Appl. Phys. Lett., 2009, 94: 031103.

    YI Ming-fang, WANG Pei, WANG Xiao-lei, WEN Xiao-lei, LU Yong-hua. Micro-nano-structure enhanced third-order optical nonlinearity and its development in all-optical tunable nonlinear devices[J]. Chinese Journal of Quantum Electronics, 2010, 27(6): 641
    Download Citation