• Acta Optica Sinica
  • Vol. 38, Issue 3, 328003 (2018)
Wang Chao, Sun Fujun, Fu Zhongyuan, Zhou Jian, Ding Zhaoxiang, and Tian Huiping*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/AOS201838.0328003 Cite this Article Set citation alerts
    Wang Chao, Sun Fujun, Fu Zhongyuan, Zhou Jian, Ding Zhaoxiang, Tian Huiping. Research Progresses on Theory and Experiments of Photonic Crystal Micronano Sensing Technology[J]. Acta Optica Sinica, 2018, 38(3): 328003 Copy Citation Text show less
    Schematics and electric field distributions of several typical 1D PC nanobeam cavities. (a) Dielectric-mode cavity[8]; (b) air-mode cavity[9]; (c) slot-based cavity[10]
    Fig. 1. Schematics and electric field distributions of several typical 1D PC nanobeam cavities. (a) Dielectric-mode cavity[8]; (b) air-mode cavity[9]; (c) slot-based cavity[10]
    Energy band diagram of dielectric-mode nanobeam cavity[8]
    Fig. 2. Energy band diagram of dielectric-mode nanobeam cavity[8]
    Energy band diagram of air-mode nanobeam cavity[8]
    Fig. 3. Energy band diagram of air-mode nanobeam cavity[8]
    1D nanobeam cavity PC sensors based on side-cavity-coupling. (a) Multiplexing sensor array with multiple nanobeams[61-63]; (b) dual-parameter sensor based on double nanobeam cavity cascading[64]
    Fig. 4. 1D nanobeam cavity PC sensors based on side-cavity-coupling. (a) Multiplexing sensor array with multiple nanobeams[61-63]; (b) dual-parameter sensor based on double nanobeam cavity cascading[64]
    Design of 1D nanobeam cavity PC sensor array based on multi-cavity and multi-channel. (a) 32-channel parallel integrated sensor array[65]; (b) branch-cascaed additional filters[66]; (c) own FSR performance of each branch after direct optimization[67]
    Fig. 5. Design of 1D nanobeam cavity PC sensor array based on multi-cavity and multi-channel. (a) 32-channel parallel integrated sensor array[65]; (b) branch-cascaed additional filters[66]; (c) own FSR performance of each branch after direct optimization[67]
    Designs of 2D PC sensor array based on multi-cavity and single-channel. (a) Series integrated sensor array[68-69]; (b)-(d) side-cavity-coupled integrated sensor array[70-71]
    Fig. 6. Designs of 2D PC sensor array based on multi-cavity and single-channel. (a) Series integrated sensor array[68-69]; (b)-(d) side-cavity-coupled integrated sensor array[70-71]
    Designs of 2D slab PC sensor array based on multi-cavity and multi-channel. (a)-(c) Dua-channel sensor arrays[73-74]; (d) three-channel sensor arrays[75]; (e)-(f) four-channel sensor arrays[76-77]
    Fig. 7. Designs of 2D slab PC sensor array based on multi-cavity and multi-channel. (a)-(c) Dua-channel sensor arrays[73-74]; (d) three-channel sensor arrays[75]; (e)-(f) four-channel sensor arrays[76-77]
    Design of sensor arrays based on PC cavity and filter cascading. (a) From reference [78]; (b) from reference [79]
    Fig. 8. Design of sensor arrays based on PC cavity and filter cascading. (a) From reference [78]; (b) from reference [79]
    (a) 64-cavity integrated sensor array[80]; (b) on-chip multi-functional sensor platform[81]
    Fig. 9. (a) 64-cavity integrated sensor array[80]; (b) on-chip multi-functional sensor platform[81]
    ReferenceStructureQResearch type
    [3]256Experiment
    [4]105Experiment
    [5]6.3×107Experiment
    [6]1.49×105Experiment
    [7]7.5×105Experiment
    [8]109Experiment
    Table 1. Studies for improving Q factor value of nanobeam cavity
    ReferenceStructureQSensitivity /(nm·RIU-1)Detection limit /RIUAnalyteResearch type
    [57]7.1761×10490210-6LiquidSimulation
    [58]1.06×104>8001.6×10-7LiquidExperiment
    [59]5.5×1032981.3×10-6LiquidExperiment
    [60]1.8×10494.53×10-6LiquidExperiment
    Table 1. 0 2D slab PC structure with guided-mode resonance applied in sensing field
    ReferenceStructureQSensitivityAnalyteResearch type
    [11]3.6×104386 nm·RIU-1Glucose solutionExperiment
    [12]2.7×104269 nm·RIU-1LiquidExperiment
    [13]106190 nm·RIU-1GasSimulation
    [14]10410-5GasExperiment
    [15]10698 nm·RIU-1LiquidExperiment
    [16]1.3×104428 nm·RIU-1NaCl solutionExperiment
    [17]3.5×10458 nm·RIU-1Ternary liquid mixtureExperiment
    Table 2. 1D PC dielectric-mode nanobeam cavity applied in sensing field
    RefereceStructureQSensitivity /(nm·RIU-1)AnalyteResearch type
    [18]2.5×105-Nano-particleExperiment
    [19]770461LiquidExperiment
    [9]104537.8LiquidSimulation
    [20]104389LiquidSimulation
    [21]105252GasSimulation
    Table 3. 1D PC air-mode nanobeam cavity applied in sensing field
    ReferenceStructureQSensitivity /(nm·RIU-1)AnalyteResearch type
    [22]3×103700Sucrose solutionExperiment
    [23]104410NaCl solutionExperiment
    [24]6.08×106460LiquidSimulation
    [25]103234GasExperiment
    [26]105851GasSimulation
    [27]4.5×107-Polystyrene particlesSimulation
    [28]7×103451Ethanol solutionExperiment
    [10]107900GasSimulation
    [29]1.14×107451LiquidSimulation
    Table 4. 1D PC slot-based nanobeam cavity applied in sensing field
    ReferenceStructureQSensitivity /(nm·RIU-1)Research type
    [30]20971017.98Simulation
    [31]<502184Experiment
    Table 5. 1D PC surface-mode cavity applied in sensing field
    ReferenceStructureQResearch type
    [32]4.5×104Experiment
    [33]105Simulation
    [34]106Experiment
    [35]3×103Experiment
    [36]103Simulation
    [37]9.3×103Experiment
    [38]106Simulation
    Table 6. 2D slab PC point-defect cavity with high quality factor
    ReferenceStructureQSensitivityAnalyteResearch type
    [39]about 3×103-Bio-moleculeSimulation
    [40]2.676×10415 ng/mLBiomacro-moleculeExperiment
    [41]1.4×1043.35 pg/mLAntibiotic proteins combined with biotinExperiment
    [42]2.966×103131.70 nm/RIULiquidSimulation
    [43]--Biomacro-moleculeSimulation
    [44]--Biomacro-moleculeExperiment
    Table 7. 2D PC point-defect cavity applied in biochemical sensing field
    ReferenceStructureQSensitivity /(nm·RIU-1)AnalyteResearch type
    [45]6×105--Experiment
    [46]3.82×106-1.01×106171,360GasSimulation
    [47]5×104150LiquidExperiment
    [48]2.6×104510GasExperiment
    [49]2.5×104235LiquidExperiment
    Table 8. 2D PC heterostructure cavity applied in sensing field
    ReferenceStructureDetection limitAnalyteResearch type
    [50]0.2 fgBovine serum albuminExperiment
    [51]10-4MethaneExperiment
    [52]10-6AcetyleneSimulation
    [53]1.56×10-6GasSimulation
    Table 9. 2D PC slow-light waveguide applied in sensing field
    Wang Chao, Sun Fujun, Fu Zhongyuan, Zhou Jian, Ding Zhaoxiang, Tian Huiping. Research Progresses on Theory and Experiments of Photonic Crystal Micronano Sensing Technology[J]. Acta Optica Sinica, 2018, 38(3): 328003
    Download Citation