• Journal of Semiconductors
  • Vol. 43, Issue 7, 070201 (2022)
Jiamin Cao1、*, Guangan Nie1, Lixiu Zhang2, and Liming Ding2、**
Author Affiliations
  • 1Key Laboratory of Theoretical Organic Chemistry and Functional Molecule (MoE), School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
  • 2Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
  • show less
    DOI: 10.1088/1674-4926/43/7/070201 Cite this Article
    Jiamin Cao, Guangan Nie, Lixiu Zhang, Liming Ding. Star polymer donors[J]. Journal of Semiconductors, 2022, 43(7): 070201 Copy Citation Text show less
    References

    [1] Q Liu, Y Jiang, K Jin et al. 18% Efficiency organic solar cells. Sci Bull, 65, 272(2020).

    [2] K Chong, X Xu, H Meng et al. Realizing 19.05% efficiency polymer solar cells by progressively improving charge extraction and suppressing charge recombination. Adv Mater, 34, 2109516(2022).

    [3] Y Zeng, D Li, Z Xiao et al. Exploring the charge dynamics and energy loss in ternary organic solar cells with a fill factor exceeding 80%. Adv Energy Mater, 11, 2101338(2021).

    [4] D Li, Y Zeng, Z Chen et al. Investigating the reason for high FF from ternary organic solar cells. J Semicond, 42, 090501(2021).

    [5] Y Luo, X Chen, Z Xiao et al. A large-bandgap copolymer donor for efficient ternary organic solar cells. Mater Chem Front, 5, 6139(2021).

    [6] C Duan, L Ding. The new era for organic solar cells: non-fullerene small molecular acceptors. Sci Bull, 65, 1231(2020).

    [7] J Cao, L Yi, L Ding. The origin and evolution of Y6 structure. J Semicond, 43, 030202(2022).

    [8] J Wang, Y Gao, Z Xiao et al. A wide-bandgap copolymer donor based on a phenanthridin-6(5H)-one unit. Mater Chem Front, 3, 2686(2019).

    [9] T Wang, J Qin, Z Xiao et al. A 2.16 eV bandgap polymer donor gives 16% power conversion efficiency. Sci Bull, 65, 179(2020).

    [10] J Xiong, J Xu, Y Jiang et al. Fused-ring bislactone building blocks for polymer donors. Sci Bull, 65, 1792(2020).

    [11] Y Jiang, K Jin, X Chen et al. Post-sulphuration enhances the performance of a lactone polymer donor. J Semicond, 42, 070501(2021).

    [12] Z Ou, J Qin, K Jin et al. Engineering of the alkyl chain branching point on a lactone polymer donor yields 17.81% efficiency. J Mater Chem A, 10, 3314(2022).

    [13] Z Zheng, H Yao, L Ye et al. PBDB-T and its derivatives: A family of polymer donors enables over 17% efficiency in organic photovoltaics. Mater Today, 35, 115(2020).

    [14] R Ma, T Liu, Z Luo et al. Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%. Sci China Chem, 63, 325(2020).

    [15] L Zhou, L Meng, J Zhang et al. Introducing low-cost pyrazine unit into terpolymer enables high-performance polymer solar cells with efficiency of 18.23%. Adv Funct Mater, 32, 2109271(2022).

    [16] Z Wang, Z Peng, Z Xiao et al. Thermodynamic properties and molecular packing explain performance and processing procedures of three D18:NFA organic solar cells. Adv Mater, 32, 2005386(2020).

    [17] J Qin, L Zhang, C Zuo et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 42, 010501(2021).

    [18] K Jin, Z Xiao, L Ding. 18.69% PCE from organic solar cells. J Semicond, 42, 060502(2021).

    [19] X Meng, K Jin, Z Xiao et al. Side chain engineering on D18 polymers yields 18.74% power conversion efficiency. J Semicond, 42, 100501(2021).

    [20] X Li, J Xu, Z Xiao et al. Dithieno[3',2':3,4;2'',3'':5, 6]benzo[1,2-c][1,2,5]oxadiazole-based polymer donors with deep HOMO levels. J Semicond, 42, 060501(2021).

    [21] A Sun, J Xu, G Zong et al. A wide-bandgap copolymer donor with a 5-methyl-4H-dithieno[3,2-e:2',3'-g]isoindole-4,6(5H)-dione unit. J Semicond, 42, 100502(2021).

    [22] Y Cui, Y Xu, H Yao et al. Single-junction organic photovoltaic cell with 19% efficiency. Adv Mater, 33, 2102420(2021).

    [23] Y Xu, Y Cui, H Yao et al. A new conjugated polymer that enables the integration of photovoltaic and light-emitting functions in one device. Adv Mater, 33, 2101090(2021).

    [24] T Zhang, C An, P Bi et al. A thiadiazole-based conjugated polymer with ultradeep HOMO level and strong electroluminescence enables 18.6% efficiency in organic solar cell. Adv Energy Mater, 11, 2101705(2021).

    [25] C Duan, L Ding. The new era for organic solar cells: polymer donors. Sci Bull, 65, 1422(2020).

    [26] J Qin, L Zhang, Z Xiao et al. Over 16% efficiency from thick-film organic solar cells. Sci Bull, 65, 1979(2020).

    [27] J Xu, A Sun, Z Xiao et al. Efficient wide-bandgap copolymer donor with reduced synthesis cost. J Mater Chem C, 9, 16187(2021).

    [28] X Yang, L Ding. Organic semiconductors: commercialization and market. J Semicond, 42, 090201(2021).

    [29] K Jin, Z Ou, L Zhang et al. A chlorinated lactone polymer donor featuring high performance and low cost. J Semicond, 43, 050501(2022).

    [30] Y Tong, Z Xiao, X Du et al. Progress of the key materials for organic solar cells. Sci China Chem, 63, 758(2020).

    Jiamin Cao, Guangan Nie, Lixiu Zhang, Liming Ding. Star polymer donors[J]. Journal of Semiconductors, 2022, 43(7): 070201
    Download Citation