• Photonics Insights
  • Vol. 3, Issue 1, R02 (2024)
Jianbin Zhang1、†, Hubiao Fang1, Pan Wang1、2, Wei Fang1、2, Lei Zhang1, Xin Guo1、2、*, and Limin Tong1、2、3、*
Author Affiliations
  • 1Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
  • 2Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China
  • show less
    DOI: 10.3788/PI.2024.R02 Cite this Article Set citation alerts
    Jianbin Zhang, Hubiao Fang, Pan Wang, Wei Fang, Lei Zhang, Xin Guo, Limin Tong. Optical microfiber or nanofiber: a miniature fiber-optic platform for nanophotonics[J]. Photonics Insights, 2024, 3(1): R02 Copy Citation Text show less
    References

    [1] C. V. Boys. On the production, properties, and some suggested uses of the finest threads. Proc. Phys. Soc. London, 9, 8(1887).

    [2] A. Einstein. Experimenteller nachweis der ampereschen molekularströme. Naturwissenschaften, 3, 237(1915).

    [3] A. Einstein, W. J. De Haas. Experimental proof of the existence of ampère’s molecular currents. Proc. KNAW, 181, 696(1915).

    [4] D. Hondros, P. Debye. Electromagnetic waves in dielectrical wires. Ann. Phys., 337, 465(1910).

    [5] H. M. Barlow, A. L. Cullen. Surface waves. Proc. IEEE, 100, 329(1953).

    [6] H. M. Barlow, A. E. Karbowiak. An investigation of the characteristics of cylindrical surface waves. Proc. IEEE, 100, 321(1953).

    [7] E. Snitzer. Optical wave-guide modes in small glass fibers. 1. theoretical. J. Opt. Soc. Am., 49, 1128(1959).

    [8] H. Osterberg et al. Optical wave-guide modes in small glass fibers. 2. experimental. J. Opt. Soc. Am., 49, 1128(1959).

    [9] J. Hecht. City of Light: The Story of Fiber Optics(1999).

    [10] A. C. S. Vanheel. A new method of transporting optical images without aberrations. Nature, 173, 39(1954).

    [11] H. H. Hopkins, N. S. Kapany. A flexible fibrescope, using static scanning. Nature, 173, 39(1954).

    [12] N. S. Kapany. High-resolution fibre optics using sub-micron multiple fibres. Nature, 184, 881(1959).

    [13] K. C. Kao, G. A. Hockham. Dielectric-fibre surface waveguides for optical frequencies. Proc. Inst. Electr. Eng., 113, 1151(1966).

    [14] J. D. Love, W. M. Henry. Quantifying loss minimization in single-mode fiber tapers. Electron. Lett., 22, 912(1986).

    [15] W. K. Burns et al. Loss mechanisms in single-mode fiber tapers. J. Lightwave Technol., 4, 608(1986).

    [16] J. D. Love et al. Tapered single-mode fibers and devices. Part 1: adiabaticity criteria. IEEE Proc. J. Optoelectron., 138, 343(1991).

    [17] R. J. Black et al. Tapered single-mode fibers and devices. Part 2: experimental and theoretical quantification. IEEE Proc. J. Optoelectron., 138, 355(1991).

    [18] T. A. Birks, Y. W. Li. The shape of fiber tapers. J. Lightwave Technol., 10, 432(1992).

    [19] A. W. Snyder. Coupled-mode theory for optical fibers. J. Opt. Soc. Am., 62, 1267(1972).

    [20] J. Bures, R. Ghosh. Power density of the evanescent field in the vicinity of a tapered fiber. J. Opt. Soc. Am. A, 16, 1992(1999).

    [21] D. T. Cassidy, D. C. Johnson, K. O. Hill. Wavelength-dependent transmission of monomode optical fiber tapers. Appl. Opt., 24, 945(1985).

    [22] R. Feced et al. Acoustooptic attenuation filters based on tapered optical fibers. IEEE J. Sel. Top. Quantum Electron., 5, 1278(1999).

    [23] F. Bilodeau et al. Compact, low-loss, fused biconical taper couplers: overcoupled operation and antisymmetric supermode cutoff. Opt. Lett., 12, 634(1987).

    [24] T. E. Dimmick et al. Carbon dioxide laser fabrication of fused-fiber couplers and tapers. Appl. Opt., 38, 6845(1999).

    [25] H. S. Mackenzie, F. P. Payne. Evanescent field amplification in a tapered single-mode optical fiber. Electron. Lett., 26, 130(1990).

    [26] M. G. Xu et al. Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical-fiber. Electron. Lett., 31, 823(1995).

    [27] C. Bariáin et al. Optical fiber humidity sensor based on a tapered fiber coated with agarose gel. Sens. Actuator B-Chem., 69, 127(2000).

    [28] T. A. Birks, W. J. Wadsworth, P. S. J. Russell. Supercontinuum generation in tapered fibers. Opt. Lett., 25, 1415(2000).

    [29] L. M. Tong et al. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature, 426, 816(2003).

    [30] L. M. Tong, J. Y. Lou, E. Mazur. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Opt. Express, 12, 1025(2004).

    [31] S. G. Leon-Saval et al. Supercontinuum generation in submicron fibre waveguides. Opt. Express, 12, 2864(2004).

    [32] X. Guo, Y. B. Ying, L. M. Tong. Photonic nanowires: from subwavelength waveguides to optical sensors. Accounts Chem. Res., 47, 656(2014).

    [33] G. Brambilla, V. Finazzi, D. Richardson. Ultra-low-loss optical fiber nanotapers. Opt. Express, 12, 2258(2004).

    [34] L. M. Tong et al. Self-modulated taper drawing of silica nanowires. Nanotechnology, 16, 1445(2005).

    [35] G. Brambilla, F. Xu, X. Feng. Fabrication of optical fibre nanowires and their optical and mechanical characterisation. Electron. Lett., 42, 517(2006).

    [36] F. Orucevic, V. Lefèvre-Seguin, J. Hare. Transmittance and near-field characterization of sub-wavelength tapered optical fibers. Opt. Express, 15, 13624(2007).

    [37] J. E. Hoffman et al. Ultrahigh transmission optical nanofibers. AIP Adv., 4, 067124(2014).

    [38] Y. X. Xu, W. Fang, L. M. Tong. Real-time control of micro/nanofiber waist diameter with ultrahigh accuracy and precision. Opt. Express, 25, 10434(2017).

    [39] Y. Kang et al. Ultrahigh-precision diameter control of nanofiber using direct mode cutoff feedback. IEEE Photon. Technol. Lett., 32, 219(2020).

    [40] N. Yao et al. Ultra-long subwavelength micro/nanofibers with low loss. IEEE Photon. Technol. Lett., 32, 1069(2020).

    [41] L. Shi et al. Fabrication of submicron-diameter silica fibers using electric strip heater. Opt. Express, 14, 5055(2006).

    [42] L. Ding et al. Ultralow loss single-mode silica tapers manufactured by a microheater. Appl. Opt., 49, 2441(2010).

    [43] C. J. Ma et al. Design and fabrication of tapered microfiber waveguide with good optical and mechanical performance. J. Mod. Opt., 61, 683(2014).

    [44] H. L. Sørensen, E. S. Polzik, J. Appel. Heater self-calibration technique for shape prediction of fiber tapers. J. Lightwave Technol., 32, 1886(2014).

    [45] Y. Yu et al. Precise control of the optical microfiber tapering process based on monitoring of intermodal interference. Appl. Opt., 53, 8222(2014).

    [46] F. Bayle, J. P. Meunier. Efficient fabrication of fused-fiber biconical taper structures by a scanned CO2 laser beam technique. Appl. Opt., 44, 6402(2005).

    [47] J. M. Ward et al. Heat-and-pull rig for fiber taper fabrication. Rev. Sci. Instrum., 85, 111501(2006).

    [48] L. Ç. Özcan et al. Highly symmetric optical fiber tapers fabricated with a CO2 laser. IEEE Photon. Technol. Lett., 19, 656(2007).

    [49] J. M. Ward et al. Contributed review: optical micro- and nanofiber pulling rig. Rev. Sci. Instrum., 85, 111501(2014).

    [50] Y. Kang et al. Fabrication methods and high-precision diameter control techniques of optical micro-/nanofibers. Sci. Sin.-Phys. Mech. Astron., 50, 084212(2020).

    [51] D. X. Dai, J. Bauters, J. E. Bowers. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light Sci. Appl., 1, e1(2012).

    [52] J. Chen et al. Real-time measurement and control of nanofiber diameters using a femtowatt photodetector. Opt. Express, 30, 12008(2022).

    [53] S. K. Ruddell et al. Ultra-low-loss nanofiber Fabry-Perot cavities optimized for cavity quantum electrodynamics. Opt. Lett., 45, 4875(2020).

    [54] J. B. Zhang et al. High-power continuous-wave optical waveguiding in a silica micro/nanofibre. Light Sci. Appl., 12, 89(2023).

    [55] G. Brambilla et al. Compound-glass optical nanowires. Electron. Lett., 41, 400(2005).

    [56] L. M. Tong et al. Photonic nanowires directly drawn from bulk glasses. Opt. Express, 14, 82(2006).

    [57] E. C. Mägi et al. Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers. Opt. Express, 15, 10324(2007).

    [58] G. Brambilla et al. Optical fiber nanowires and microwires: fabrication and applications. Adv. Opt. Photonics, 1, 107(2009).

    [59] X. Q. Wu, L. M. Tong. Optical microfibers and nanofibers. Nanophotonics, 2, 407(2013).

    [60] R. Ismaeel et al. Optical microfiber passive components. Laser Photon. Rev., 7, 350(2013).

    [61] G. Brambilla, D. N. Payne. The ultimate strength of glass silica nanowires. Nano Lett., 9, 831(2009).

    [62] S. Holleis et al. Experimental stress-strain analysis of tapered silica optical fibers with nanofiber waist. Appl. Phys. Lett., 104, 163109(2014).

    [63] A. Godet et al. Nonlinear elasticity of silica nanofiber. APL Photonics, 4, 080804(2019).

    [64] L. Zhang, J. Y. Lou, L. M. Tong. Micro/nanofiber optical sensors. Photonic Sens., 1, 31(2010).

    [65] L. M. Tong. Micro/nanofibre optical sensors: challenges and prospects. Sensors, 18, 903(2018).

    [66] L. Zhang, Y. Tang, L. M. Tong. Micro-/nanofiber optics: merging photonics and material science on nanoscale for advanced sensing technology. iScience, 23, 100810(2020).

    [67] M. A. Foster et al. Nonlinear optics in photonic nanowires. Opt. Express, 16, 1300(2008).

    [68] G. P. Agrawal. Nonlinear Fiber Optics(2013).

    [69] F. Xu, Z. X. Wu, Y. Q. Lu. Nonlinear optics in optical-fiber nanowires and their applications. Prog. Quantum Electron., 55, 35(2017).

    [70] D. A. Akimov et al. Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber. Appl. Phys. B, 76, 515(2003).

    [71] V. Grubsky, A. Savchenko. Glass micro-fibers for efficient third harmonic generation. Opt. Express, 13, 6798(2005).

    [72] M. A. Gouveia et al. Second harmonic generation and enhancement in microfibers and loop resonators. Appl. Phys. Lett., 102, 201120(2013).

    [73] J. C. Beugnot et al. Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre. Nat. Commun., 5, 5242(2014).

    [74] A. Godet et al. Brillouin spectroscopy of optical microfibers and nanofibers. Optica, 4, 1232(2017).

    [75] Y. H. Li, Y. Y. Zhao, L. J. Wang. Demonstration of almost octave-spanning cascaded four-wave mixing in optical microfibers. Opt. Lett., 37, 3441(2012).

    [76] L. Y. Shan et al. Design of nanofibres for efficient stimulated Raman scattering in the evanescent field. J. Eur. Opt. Soc.-Rapid Publ., 8, 13030(2013).

    [77] L. Y. Shan et al. Stimulated Raman scattering in the evanescent field of liquid immersed tapered nanofibers. Appl. Phys. Lett., 102, 201110(2013).

    [78] C. M. B. Cordeiro et al. Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser. Opt. Lett., 30, 1980(2005).

    [79] M. A. Foster et al. Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation. Appl. Phys. B, 81, 363(2005).

    [80] A. Hartung, A. M. Heidt, H. Bartelt. Nanoscale all-normal dispersion optical fibers for coherent supercontinuum generation at ultraviolet wavelengths. Opt. Express, 20, 13777(2012).

    [81] M. A. Foster et al. Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires. Opt. Express, 13, 6848(2005).

    [82] Y. H. Li et al. Microfiber-enabled dissipative soliton fiber laser at 2 µm. Opt. Lett., 43, 6105(2018).

    [83] L. Z. Wang et al. Femtosecond mode-locked fiber laser at 1 µm via optical microfiber dispersion management. Sci. Rep., 8, 4732(2018).

    [84] Y. H. Li et al. Optical microfiber-based ultrafast fiber lasers. Appl. Phys. B, 125, 192(2019).

    [85] Y. C. Li et al. Optical fiber technologies for nanomanipulation and biodetection: a review. J. Lightwave Technol., 39, 251(2021).

    [86] T. Nieddu, V. Gokhroo, S. Nic Chormaic. Optical nanofibres and neutral atoms. J. Opt., 18, 053001(2016).

    [87] P. Solano et al. Optical nanofibers: a new platform for quantum optics. Adv. Atom. Mol. Opt. Phys., 66, 439(2017).

    [88] K. P. Nayak et al. Nanofiber quantum photonics. J. Opt., 20, 073001(2018).

    [89] W. L. She, J. H. Yu, R. H. Feng. Observation of a push force on the end face of a nanometer silica filament exerted by outgoing light. Phys. Rev. Lett., 101, 243601(2008).

    [90] H. D. Zheng et al. Accurate measurement of nanomechanical motion in a fiber-taper nano-optomechanical system. Appl. Phys. Lett., 115, 013104(2019).

    [91] Y. Zhang et al. A broadband and low-power light-control-light effect in a fiber-optic nano-optomechanical system. Nanoscale, 12, 9800(2020).

    [92] F. Yang et al. Large evanescently-induced Brillouin scattering at the surrounding of a nanofibre. Nat. Commun., 13, 1432(2022).

    [93] W. D. Xu et al. Strong optomechanical interactions with long-lived fundamental acoustic waves. Optica, 10, 206(2023).

    [94] J. H. Yu, R. H. Feng, W. L. She. Low-power all-optical switch based on the bend effect of a nm fiber taper driven by outgoing light. Opt. Express, 17, 4640(2009).

    [95] L. M. Tong. Brief introduction to optical microfibers and nanofibers. Front. Optoelectron. China, 3, 54(2010).

    [96] G. Brambilla. Optical fibre nanowires and microwires: a review. J. Opt., 12, 043001(2010).

    [97] L. M. Tong, M. Sumetsky. Subwavelength and Nanometer Diameter Optical Fibers(2009).

    [98] N. S. Kapany. Fiber optics. Part I. Optical properties of certain dielectric cylinders. J. Opt. Soc. Am., 47, 413(1957).

    [99] S. Bateson. Critical study of the optical and mechanical properties of glass fibers. J. Appl. Phys., 29, 13(1958).

    [100] K. P. Jedrzejewski et al. Tapered-beam expander for single-mode optical-fiber gap devices. Electron. Lett., 22, 105(1986).

    [101] J. C. Knight et al. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt. Lett., 22, 1129(1997).

    [102] R. H. Doremus. Viscosity of silica. J. Appl. Phys., 92, 7619(2002).

    [103] P. K. Gupta et al. Nanoscale roughness of oxide glass surfaces. J. Non-Cryst. Solids, 262, 200(2000).

    [104] T. Seydel et al. Freezing of capillary waves at the glass transition. Phys. Rev. B, 65, 184207(2002).

    [105] T. Sarlat et al. Frozen capillary waves on glass surfaces: an AFM study. Eur. Phys. J. B, 54, 121(2006).

    [106] H. J. Kbashi. Fabrication of submicron-diameter and taper fibers using chemical etching. J. Mater. Sci. Technol., 28, 308(2012).

    [107] D. P. Yu et al. Amorphous silica nanowires: intensive blue light emitters. Appl. Phys. Lett., 73, 3076(1998).

    [108] N. Irawati et al. Evanescent wave optical trapping and transport of polystyrene microspheres on microfibers. Microw. Opt. Technol. Lett., 56, 2630(2014).

    [109] Q. Yang et al. Polymer micro or nanofibers for optical device applications. J. Appl. Polym. Sci., 110, 1080(2008).

    [110] F. X. Gu et al. Light-emitting polymer single nanofibers via waveguiding excitation. ACS Nano, 4, 5332(2010).

    [111] C. Meng et al. Quantum-dot-doped polymer nanofibers for optical sensing. Adv. Mater., 23, 3770(2011).

    [112] F. X. Gu et al. Polymer single-nanowire optical sensors. Nano Lett., 8, 2757(2008).

    [113] S. Kujala et al. Natural silk as a photonics component: a study on its light guiding and nonlinear optical properties. Sci. Rep., 6, 22358(2016).

    [114] N. Huby et al. Native spider silk as a biological optical fiber. Appl. Phys. Lett., 102, 123702(2013).

    [115] J. T. Li et al. Spider silk-inspired artificial fibers. Adv. Sci., 9, 2103965(2022).

    [116] X. G. Yang et al. Light-emitting microfibers from lotus root for eco-friendly optical waveguides and biosensing. Nano Lett., 24, 566(2024).

    [117] H. B. Xin et al. Escherichia coli-based biophotonic waveguides. Nano Lett., 13, 3408(2013).

    [118] T. Y. Cui et al. From monomeric nanofibers to PbS nanoparticles/polymer composite nanofibers through the combined use of γ-irradiation and gas/solid reaction. J. Am. Chem. Soc., 128, 6298(2006).

    [119] Y. Dzenis. Spinning continuous fibers for nanotechnology. Science, 304, 1917(2004).

    [120] X. F. Duan, C. M. Lieber. General synthesis of compound semiconductor nanowires. Adv. Mater., 12, 298(2000).

    [121] P. V. Radovanovic et al. General synthesis of manganese-doped II-VI and III-V semiconductor nanowires. Nano Lett., 5, 1407(2005).

    [122] J. Johansson et al. Structural properties of <111>B -oriented III–V nanowires. Nat. Mater., 5, 574(2006).

    [123] T. Mårtensson et al. Epitaxial growth of indium arsenide nanowires on silicon using nucleation templates formed by self-assembled organic coatings. Adv. Mater., 19, 1801(2007).

    [124] H. E. Labelle, A. I. Mlavsky. Growth of sapphire filaments from the melt. Nature, 216, 574(1967).

    [125] R. K. Nubling, J. A. Harrington. Optical properties of single-crystal sapphire fibers. Appl. Opt., 36, 5934(1997).

    [126] P. Z. Xu et al. Elastic ice microfibers. Science, 373, 187(2021).

    [127] D. H. Jundt, M. M. Fejer, R. L. Byer. Characterization of single-crystal sapphire fibers for optical power delivery systems. Appl. Phys. Lett., 55, 2170(1989).

    [128] M. Law, J. Goldberger, P. D. Yang. Semiconductor nanowires and nanotubes. Ann. Rev. Mater. Res., 34, 83(2004).

    [129] N. Wang, Y. Cai, R. Q. Zhang. Growth of nanowires. Mater. Sci. Eng. R-Rep., 60, 1(2008).

    [130] S. Rackauskas, A. G. Nasibulin. Nanowire growth without catalysts: applications and mechanisms at the atomic scale. ACS Appl. Nano Mater., 3, 7314(2020).

    [131] B. W. Cui et al. Low-dimensional and confined ice. Ann. Rev. Mater. Res., 53, 371(2023).

    [132] W. Lu, C. M. Lieber. Semiconductor nanowires. J. Phys. D-Appl. Phys., 39, R387(2006).

    [133] K. S. Shankar, A. K. Raychaudhuri. Fabrication of nanowires of multicomponent oxides: review of recent advances. Mater. Sci. Eng. C, 25, 738(2005).

    [134] M. Hernández-Vélez. Nanowires and 1D arrays fabrication: an overview. Thin Solid Films, 495, 51(2006).

    [135] P. Wang, Y. P. Wang, L. M. Tong. Functionalized polymer nanofibers: a versatile platform for manipulating light at the nanoscale. Light Sci. Appl., 2, e102(2013).

    [136] R. X. Yan, D. Gargas, P. D. Yang. Nanowire photonics. Nat. Photonics, 3, 569(2009).

    [137] M. Sumetsky. Optics of tunneling from adiabatic nanotapers. Opt. Lett., 31, 3420(2006).

    [138] S. Ravets et al. Intermodal energy transfer in a tapered optical fiber: optimizing transmission. J. Opt. Soc. Am. A, 30, 2361(2013).

    [139] J. D. Love, W. M. Henry. Quantifying loss minimisation in single-mode fibre tapers. Electron. Lett., 22, 912(1986).

    [140] C. Vass, T. Smausz, B. Hopp. Wet etching of fused silica: a multiplex study. J. Phys. D-Appl. Phys., 37, 2449(2004).

    [141] P. Del’Haye et al. Octave spanning tunable frequency comb from a microresonator. Phys. Rev. Lett., 107, 063901(2011).

    [142] A. M. Clohessy et al. Short low-loss nanowire tapers on singlemode fibres. Electron. Lett., 41, 954(2005).

    [143] A. Stiebeiner, R. Garcia-Fernandez, A. Rauschenbeutel. Design and optimization of broadband tapered optical fibers with a nanofiber waist. Opt. Express, 18, 22677(2010).

    [144] F. Bilodeau et al. Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure. J. Lightwave Technol., 6, 1476(1988).

    [145] A. Felipe et al. Stepwise fabrication of arbitrary fiber optic tapers. Opt. Express, 20, 19893(2012).

    [146] S. W. Harun et al. Theoretical analysis and fabrication of tapered fiber. Optik, 124, 538(2013).

    [147] D. W. Cai et al. Chalcogenide glass microfibers for mid-infrared optics. Photonics, 8, 497(2021).

    [148] Y. Xie et al. Mid-infrared chalcogenide microfiber knot resonators. Photonics Res., 8, 616(2020).

    [149] H. B. Fang et al. Parallel fabrication of silica optical microfibers and nanofibers. Light Adv. Manuf.(2024).

    [150] C. E. Chryssou. Theoretical analysis of tapering fused silica optical fibers using a carbon dioxide laser. Opt. Eng., 38, 1645(1999).

    [151] A. J. C. Grellier, N. K. Zayer, C. N. Pannell. Heat transfer modelling in CO2 laser processing of optical fibres. Opt. Commun., 152, 324(1998).

    [152] M. Sumetsky, Y. Dulashko, A. Hale. Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer. Opt. Express, 12, 3521(2004).

    [153] Q. N. Jia et al. Fibre tapering using plasmonic microheaters and deformation-induced pull. Light Adv. Manuf., 4, 5(2023).

    [154] K. J. Huang, S. Y. Yang, L. M. Tong. Modeling of evanescent coupling between two parallel optical nanowires. Appl. Opt., 46, 1429(2007).

    [155] F. Warken, H. Giessen. Fast profile measurement of micrometer-sized tapered fibers with better than 50-nm accuracy. Opt. Lett., 29, 1727(2004).

    [156] D. J. Little, D. M. Kane. Subdiffraction-limited radius measurements of microcylinders using conventional bright-field optical microscopy. Opt. Lett., 39, 5196(2014).

    [157] A. Azzoune, P. Delaye, G. Pauliat. Optical microscopy for measuring tapered fibers beyond the diffraction limit. Opt. Express, 27, 24403(2019).

    [158] M. Michihata et al. In-process diameter measurement technique for micro-optical fiber with standing wave illumination. Nanomanuf. Metrol., 4, 28(2021).

    [159] M. Michihata et al. Measurement of diameter of sub-micrometer fiber based on analysis of scattered light intensity distribution under standing wave illumination. CIRP Annals, 71, 421(2022).

    [160] M. Sumetsky et al. Probing optical microfiber nonuniformities at nanoscale. Opt. Lett., 31, 2393(2006).

    [161] J. Keloth et al. Diameter measurement of optical nanofibers using a composite photonic crystal cavity. Opt. Lett., 40, 4122(2015).

    [162] M. Zhu et al. Diameter measurement of optical nanofiber based on high-order Bragg reflections using a ruled grating. Opt. Lett., 43, 559(2018).

    [163] L. S. Madsen et al. Nondestructive profilometry of optical nanofibers. Nano Lett., 16, 7333(2016).

    [164] F. K. Fatemi et al. Modal interference in optical nanofibers for sub-Angstrom radius sensitivity. Optica, 4, 157(2017).

    [165] P. F. Zhang et al. Nondestructive measurement of nanofiber diameters using microfiber tip. Opt. Express, 26, 31500(2018).

    [166] J. E. Hoffman et al. Rayleigh scattering in an optical nanofiber as a probe of higher-order mode propagation. Optica, 2, 416(2015).

    [167] Y. Haddad et al. Microscopic imaging along tapered optical fibers by right-angle Rayleigh light scattering in linear and nonlinear regime. Opt. Express, 29, 39159(2021).

    [168] Y. H. Lai et al. Fiber taper characterization by optical backscattering reflectometry. Opt. Express, 25, 22312(2017).

    [169] F. Jafari et al. Profilometry of an optical microfiber based on modal evolution. Opt. Lett., 45, 6607(2020).

    [170] U. Wiedemann et al. Measurement of submicrometre diameters of tapered optical fibres using harmonic generation. Opt. Express, 18, 7693(2010).

    [171] P. F. Jarschel et al. Fiber taper diameter characterization using forward Brillouin scattering. Opt. Lett., 43, 995(2018).

    [172] S. A. Harfenist et al. Direct drawing of suspended filamentary micro- and nanostructures from liquid polymers. Nano Lett., 4, 1931(2004).

    [173] P. Wang et al. Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing. Nano Lett., 12, 3145(2012).

    [174] P. Wang et al. Electron-beam-activated light-emitting polymer nanofibers. Opt. Lett., 38, 1040(2013).

    [175] N. Irawati et al. Fabrication of polymer microfiber by direct drawing. Microw. Opt. Technol. Lett., 57, 820(2015).

    [176] Y. Zhao et al. Continuous melt-drawing of highly aligned flexible and stretchable semiconducting microfibers for organic electronics. Adv. Funct. Mater., 28, 1705584(2018).

    [177] X. B. Xing et al. Ultracompact photonic coupling splitters twisted by PTT nanowires. Nano Lett., 8, 2839(2008).

    [178] W. M. Mukhtar et al. Analysis of biconical taper geometries to the transmission losses in optical microfibers. Optoelectron. Adv. Mater.-Rapid Commun., 6, 988(2012).

    [179] P. C. Fan et al. Higher-order diffraction of long-period microfiber gratings realized by arc discharge method. Opt. Express, 24, 25380(2016).

    [180] O. Yaghobi, H. R. Karimi-Alavijeh. Single step process for optical microfiber in-line Mach-Zehnder interferometers fabrication. IEEE Photon. Technol. Lett., 30, 915(2018).

    [181] C. De Marco et al. Organic light-emitting nanofibers by solvent-resistant nanofluidics. Adv. Mater., 20, 4158(2008).

    [182] R. S. Wagner, W. C. Ellis. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett., 4, 89(1964).

    [183] A. M. Morales, C. M. Lieber. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science, 279, 208(1998).

    [184] Y. Y. Wu, R. Fan, P. D. Yang. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett., 2, 83(2002).

    [185] R. Grange et al. Lithium niobate nanowires synthesis, optical properties, and manipulation. Appl. Phys. Lett., 95, 143105(2009).

    [186] H. Deng et al. Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices. Nanoscale, 7, 4163(2015).

    [187] J. G. Feng et al. Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nat. Electron., 1, 404(2018).

    [188] H. K. Yu et al. Modeling bending losses of optical nanofibers or nanowires. Appl. Opt., 48, 4365(2009).

    [189] Y. X. Yang et al. Loss reduction in sharply bent optical nanofibers by coupling with Au nanoparticles. Opt. Commun., 497, 127167(2021).

    [190] F. Le Kien et al. Coupling between guided modes of two parallel nanofibers. New J. Phys., 22, 123007(2020).

    [191] F. Le Kien et al. Spatial distributions of the fields in guided normal modes of two coupled parallel optical nanofibers. New J. Phys., 23, 043006(2021).

    [192] F. Le Kien, S. Nic Chormaic, T. Busch. Optical trap for an atom around the midpoint between two coupled identical parallel optical nanofibers. Phys. Rev. A, 103, 063106(2021).

    [193] F. Le Kien, S. Nic Chormaic, T. Busch. Optical force between two coupled identical parallel optical nanofibers. Phys. Rev. A, 105, 063517(2022).

    [194] L. Q. Shao et al. Twin-nanofiber structure for a highly efficient single-photon collection. Opt. Express, 30, 9147(2022).

    [195] S. S. Wang et al. Modeling endface output patterns of optical micro/nanofibers. Opt. Express, 16, 8887(2008).

    [196] H. Wu et al. Photonic nanolaser with extreme optical field confinement. Phys. Rev. Lett., 129, 013902(2022).

    [197] L. Yang et al. Generating a sub-nanometer-confined optical field in a nanoslit waveguiding mode. Adv. Photonics, 5, 046003(2023).

    [198] Y. X. Yang et al. Generating a nanoscale blade-like optical field in a coupled nanofiber pair. Photonics Res., 12, 154(2024).

    [199] J. Y. Lou, L. M. Tong, Z. Z. Ye. Dispersion shifts in optical nanowires with thin dielectric coatings. Opt. Express, 14, 6993(2006).

    [200] C. J. Zhao et al. Field and dispersion properties of subwavelength-diameter hollow optical fiber. Opt. Express, 15, 6629(2007).

    [201] F. Xu. Miniature function-integrated devices based on optical microfibers. J. Appl. Sci., 35, 469(2017).

    [202] A. W. Snyder, J. D. Love. Optical Waveguide Theory(1983).

    [203] F. Le Kien et al. Higher-order modes of vacuum-clad ultrathin optical fibers. Phys. Rev. A, 96, 023835(2017).

    [204] F. Le Kien et al. Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber. Opt. Commun., 242, 445(2004).

    [205] M. Joos, A. Bramati, Q. Glorieux. Complete polarization control for a nanofiber waveguide using the scattering properties. Opt. Express, 27, 18818(2019).

    [206] G. Tkachenko, F. Lei, S. Nic Chormaic. Polarisation control for optical nanofibres by imaging through a single lens. J. Opt., 21, 125604(2019).

    [207] F. C. Lei et al. Complete polarization control for a nanofiber waveguide using directional coupling. Phys. Rev. Appl., 11, 064041(2019).

    [208] Q. Y. Bao et al. Circular-area-equivalence approach for determining propagation constants of a single-mode polygonal nanowire. J. Opt. Soc. Am. B, 39, 795(2022).

    [209] M. Rusu et al. Fiber taper for dispersion management in a mode-locked ytterbium fiber laser. Opt. Lett., 31, 2257(2006).

    [210] J. Zhou et al. Broadband noise-like pulse generation at 1 μm via dispersion and nonlinearity management. Opt. Lett., 46, 1570(2021).

    [211] L. Cui et al. Generation of correlated photon pairs in micro/nano-fibers. Opt. Lett., 38, 5063(2013).

    [212] P. Delaye et al. Continuous-wave generation of photon pairs in silica nanofibers using single-longitudinal- and multilongitudinal-mode pumps. Phys. Rev. A, 104, 063715(2021).

    [213] W. J. Li, Y. X. Gao, L. M. Tong. Crosstalk in two intersecting optical microfibers. IEEE Photon. Technol. Lett., 31, 1514(2019).

    [214] V. Bondarenko, Y. Zhao. Needle beam: beyond-diffraction-limit concentration of field and transmitted power in dielectric waveguide. Appl. Phys. Lett., 89, 141103(2006).

    [215] Y. Nakayama et al. Tunable nanowire nonlinear optical probe. Nature, 447, 1098(2007).

    [216] A. V. Maslov, C. Z. Ning. Reflection of guided modes in a semiconductor nanowire laser. Appl. Phys. Lett., 83, 1237(2003).

    [217] L. K. van Vugt, S. Rühle, D. Vanmaekelbergh. Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire. Nano Lett., 6, 2707(2006).

    [218] Z. Ma et al. Near-field characterization of optical micro/nanofibres. Chin. Phys. Lett., 24, 3006(2007).

    [219] Y. Tamura et al. The first 0.14-dB/km loss optical fiber and its impact on submarine transmission. J. Lightwave Technol., 36, 44(2018).

    [220] A. Braslau et al. Capillary waves on the surface of simple liquids measured by x-ray reflectivity. Phys. Rev. A, 38, 2457(1988).

    [221] M. K. Sanyal et al. X-ray-scattering study of capillary-wave fluctuations at a liquid surface. Phys. Rev. Lett., 66, 628(1991).

    [222] J. Jackle, K. Kawasaki. Intrinsic roughness of glass surfaces. J. Phys.-Condes. Matter, 7, 4351(1995).

    [223] G. Y. Zhai, L. M. Tong. Roughness-induced radiation losses in optical micro or nanofibers. Opt. Express, 15, 13805(2007).

    [224] A. V. Kovalenko, V. N. Kurashov, A. V. Kisil. Radiation losses in optical nanofibers with random rough surface. Opt. Express, 16, 5797(2008).

    [225] M. Sumetsky. How thin can a microfiber be and still guide light?. Opt. Lett., 31, 870(2006).

    [226] M. Sumetsky et al. Thinnest optical waveguide: experimental test. Opt. Lett., 32, 754(2007).

    [227] A. Hartung, S. Brueckner, H. Bartelt. Limits of light guidance in optical nanofibers. Opt. Express, 18, 3754(2010).

    [228] A. Coillet et al. Near-field characterization of glass microfibers on a low-index substrate. Appl. Phys. B, 101, 291(2010).

    [229] K. Y. Wang et al. Quasi-guiding modes in microfibers on a high refractive index substrate. ACS Photonics, 2, 1278(2015).

    [230] X. N. Zhang et al. Energy attenuations in single microfiber and double-loop cavity supported by optical substrate. Appl. Opt., 57, 9351(2018).

    [231] L. Skuja. Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. J. Non-Cryst. Solids, 239, 16(1998).

    [232] L. Skuja et al. Defects in oxide glasses. Phys. Status Solidi, 2, 15(2005).

    [233] F. Liao et al. Enhancing monolayer photoluminescence on optical micro/nanofibers for low-threshold lasing. Sci. Adv., 5, eaax7398(2019).

    [234] S. Y. Linghu et al. Thermal-mechanical-photo-activation effect on silica micro/nanofiber surfaces: origination, reparation and utilization. Opt. Express, 30, 22755(2022).

    [235] C. Baker, M. Rochette. High nonlinearity and single-mode transmission in tapered multimode As2Se3-PMMA fibers. IEEE Photonics J., 4, 960(2012).

    [236] L. Z. Li et al. Design, fabrication and characterization of PC, COP and PMMA-cladded As2Se3 microwires. Opt. Mater. Express, 6, 912(2016).

    [237] D. Lee et al. Fabrication method for ultra-long optical micro/nano-fibers. Curr. Appl. Phys., 19, 1334(2019).

    [238] Z. Zou et al. 60-nm-thick basic photonic components and Bragg gratings on the silicon-on-insulator platform. Opt. Express, 23, 20784(2015).

    [239] I. Krasnokutska et al. Ultra-low loss photonic circuits in lithium niobate on insulator. Opt. Express, 26, 897(2018).

    [240] X. C. Ji et al. On-chip tunable photonic delay line. APL Photonics, 4, 090803(2019).

    [241] G. Vienne, Y. H. Li, L. M. Tong. Microfiber resonator in polymer matrix. IEICE Trans. Electron., E90-C, 415(2007).

    [242] F. Xu, G. Brambilla. Preservation of micro-optical fibers by embedding. Jpn. J. Appl. Phys., 47, 6675(2008).

    [243] L. Zhang et al. Simple and cost-effective fabrication of two-dimensional plastic nanochannels from silica nanowire templates. Microfluid. Nanofluid., 5, 727(2008).

    [244] L. Zhang et al. Ultra-sensitive microfibre absorption detection in a microfluidic chip. Lab Chip, 11, 3720(2011).

    [245] S.-M. Chuo, L. A. Wang. Propagation loss, degradation and protective coating of long drawn microfibers. Opt. Commun., 284, 2825(2011).

    [246] J. Pan et al. A multifunctional skin-like wearable optical sensor based on an optical micro-/nanofibre. Nanoscale, 12, 17538(2020).

    [247] L. Zhang et al. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electron. Adv., 3, 19002201(2020).

    [248] N. Lou et al. Embedded optical micro/nano-fibers for stable devices. Opt. Lett., 35, 571(2010).

    [249] Y. Chen, F. Xu, Y. Q. Lu. Teflon-coated microfiber resonator with weak temperature dependence. Opt. Express, 19, 22923(2011).

    [250] L. M. Xiao et al. Stable low-loss optical nanofibres embedded in hydrophobic aerogel. Opt. Express, 19, 764(2011).

    [251] A. Sulaiman et al. Microfiber Mach-Zehnder interferometer embedded in low index polymer. Opt. Laser Technol., 44, 1186(2012).

    [252] P. F. Wang et al. Packaged, high-Q, microsphere-resonator-based add-drop filter. Opt. Lett., 39, 5208(2014).

    [253] L. H. Liu et al. Fabrication of highly stable microfiber structures via high-substituted hydroxypropyl cellulose coating for device and sensor applications. Opt. Lett., 40, 1492(2015).

    [254] L. Jin et al. Low-loss microfiber splicing based on low-index polymer coating. IEEE Photon. Technol. Lett., 28, 1181(2016).

    [255] M. Bouhadida, P. Delaye, S. Lebrun. Long-term optical transmittance measurements of silica nanofibers. Opt. Commun., 500, 127336(2021).

    [256] Y. Xue et al. Ultrasensitive temperature sensor based on an isopropanol-sealed optical microfiber taper. Opt. Lett., 38, 1209(2013).

    [257] W. Jin et al. Robust microfiber photonic microcells for sensor and device applications. Opt. Express, 22, 28132(2014).

    [258] L. Zhao et al. Highly sensitive temperature sensor based on an isopropanol-sealed optical microfiber coupler. Appl. Phys. Lett., 113, 111901(2018).

    [259] Y. Jung et al. Adiabatic higher-order mode microfibers based on a logarithmic index profile. Opt. Express, 28, 19126(2020).

    [260] K. P. Nayak et al. Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence. Opt. Express, 15, 5431(2007).

    [261] M. M. Lai, J. D. Franson, T. B. Pittman. Transmission degradation and preservation for tapered optical fibers in rubidium vapor. Appl. Opt., 52, 2595(2013).

    [262] T. B. Pittman, D. E. Jones, J. D. Franson. Ultralow-power nonlinear optics using tapered optical fibers in metastable xenon. Phys. Rev. A, 88, 053804(2013).

    [263] H. P. Lamsal, J. D. Franson, T. B. Pittman. Transmission characteristics of optical nanofibers in metastable xenon. Appl. Opt., 58, 6470(2019).

    [264] R. W. Boyd. Nonlinear Optics(2008).

    [265] M. Kolesik, E. M. Wright, J. V. Moloney. Simulation of femtosecond pulse propagation in sub-micron diameter tapered fibers. Appl. Phys. B, 79, 293(2004).

    [266] H. Lu et al. Optimization of supercontinuum generation in air-silica nanowires. J. Opt. Soc. Am. B, 27, 904(2010).

    [267] J. Lægsgaard. Modeling of nonlinear propagation in fiber tapers. J. Opt. Soc. Am. B, 29, 3183(2012).

    [268] J. Laegsgaard. Theory of surface second-harmonic generation in silica nanowires. J. Opt. Soc. Am. B, 27, 1317(2010).

    [269] S. Richard. Second-harmonic generation in tapered optical fibers. J. Opt. Soc. Am. B, 27, 1504(2010).

    [270] A. Azzoune, P. Delaye, G. Pauliat. Modeling photon pair generation by second-order surface nonlinearity in silica nanofibers. J. Opt. Soc. Am. B, 38, 1057(2021).

    [271] W. Luo et al. Efficient surface second-harmonic generation in slot micro/nano-fibers. Opt. Express, 21, 11554(2013).

    [272] G. X. Wu et al. Quasi-phase-matching method based on coupling compensation for surface second-harmonic generation in optical fiber nanowire coupler. ACS Photonics, 5, 3916(2018).

    [273] V. Grubsky, J. Feinberg. Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber. Opt. Commun., 274, 447(2007).

    [274] A. Coillet, P. Grelu. Third-harmonic generation in optical microfibers: from silica experiments to highly nonlinear glass prospects. Opt. Commun., 285, 3493(2012).

    [275] T. Lee et al. Broadband third harmonic generation in tapered silica fibres. Opt. Express, 20, 8503(2012).

    [276] M. I. M. Abdul Khudus et al. Effect of intrinsic surface roughness on the efficiency of intermodal phase matching in silica optical nanofibers. Opt. Lett., 40, 1318(2015).

    [277] X. J. Jiang et al. Fundamental-mode third harmonic generation in microfibers by pulse-induced quasi-phase matching. Opt. Express, 25, 22626(2017).

    [278] X. J. Jiang et al. Optimized microfiber-based third-harmonic generation with adaptive control of phase mismatch. Opt. Lett., 43, 2728(2018).

    [279] X. J. Jiang et al. Enhanced UV third-harmonic generation in microfibers by controlling nonlinear phase modulations. Opt. Lett., 44, 4191(2019).

    [280] Z. Hao et al. Strain-controlled phase matching of optical harmonic generation in microfibers. Phys. Rev. Appl., 19, L031002(2023).

    [281] J. H. Kim et al. Photon-pair source working in a silicon-based detector wavelength range using tapered micro/nanofibers. Opt. Lett., 44, 447(2019).

    [282] M. I. M. Abdul Khudus et al. Phase matched parametric amplification via four-wave mixing in optical microfibers. Opt. Lett., 41, 761(2016).

    [283] R. Vacher, L. Boyer. Brillouin scattering: a tool for the measurement of elastic and photoelastic constants. Phys. Rev. B, 6, 639(1972).

    [284] A. Kobyakov, M. Sauer, D. Chowdhury. Stimulated Brillouin scattering in optical fibers. Adv. Opt. Photonics, 2, 1(2009).

    [285] A. Godet et al. Micronewton nanofiber force sensor using Brillouin scattering. Opt. Express, 30, 815(2022).

    [286] O. Florez et al. Brillouin scattering self-cancellation. Nat. Commun., 7, 11759(2016).

    [287] D. M. Chow et al. Local activation of surface and hybrid acoustic waves in optical microwires. Opt. Lett., 43, 1487(2018).

    [288] M. Cao et al. Inter-mode forward Brillouin scattering in nanofibers. J. Lightwave Technol., 38, 6911(2020).

    [289] M. Cao et al. Influence of optical mode polarization state on the Brillouin gain spectrum in optical microfibers. J. Opt. Soc. Am. B, 39, 1443(2022).

    [290] M. Bouhadida et al. Highly efficient and reproducible evanescent Raman converters based on a silica nanofiber immersed in a liquid. Appl. Phys. B, 125, 228(2019).

    [291] Y. Qi et al. Nanofiber enhanced stimulated Raman spectroscopy for ultra-fast, ultra-sensitive hydrogen detection with ultra-wide dynamic range. Optica, 6, 570(2019).

    [292] R. R. Alfano, S. L. Shapiro. Emission in the region 4000 to 7000 Å via four-photon coupling in glass. Phys. Rev. Lett., 24, 584(1970).

    [293] C. Lin, R. H. Stolen. New nanosecond continuum for excited-state spectroscopy. Appl. Phys. Lett., 28, 216(1976).

    [294] M. A. Foster, K. D. Moll, A. L. Gaeta. Optimal waveguide dimensions for nonlinear interactions. Opt. Express, 12, 2880(2004).

    [295] R. R. Gattass et al. Supercontinuum generation in submicrometer diameter silica fibers. Opt. Express, 14, 9408(2006).

    [296] D. I. Yeom et al. Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. Opt. Lett., 33, 660(2008).

    [297] D. D. Hudson et al. Highly nonlinear chalcogenide glass micro/nanofiber devices: design, theory, and octave-spanning spectral generation. Opt. Commun., 285, 4660(2012).

    [298] A. Al-kadry et al. Broadband supercontinuum generation in As2Se3 chalcogenide wires by avoiding the two-photon absorption effects. Opt. Lett., 38, 1185(2013).

    [299] C. W. Rudy et al. Octave-spanning supercontinuum generation in in situ tapered As2Se3 fiber pumped by a thulium-doped fiber laser. Opt. Lett., 38, 2865(2013).

    [300] A. Marandi et al. Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 µm. Opt. Express, 20, 24218(2012).

    [301] A. Al-Kadry et al. Two octaves mid-infrared supercontinuum generation in As2Se3 microwires. Opt. Express, 22, 31131(2014).

    [302] Y. N. Sun et al. Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures. Opt. Express, 23, 23472(2015).

    [303] D. D. Hudson et al. Toward all-fiber supercontinuum spanning the mid-infrared. Optica, 4, 1163(2017).

    [304] Y. Y. Wang et al. 14–72 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime. Opt. Lett., 42, 3458(2017).

    [305] S. Gao, X. Y. Bao. Chalcogenide taper and its nonlinear effects and sensing applications. iScience, 23, 100802(2020).

    [306] Y. Y. Wang, S. X. Dai. Mid-infrared supercontinuum generation in chalcogenide glass fibers: a brief review. PhotoniX, 2, 9(2021).

    [307] C. M. Lieber. One-dimensional nanostructures: chemistry, physics &amp; applications. Solid State Commun., 107, 607(1998).

    [308] M. Naraghi et al. Novel method for mechanical characterization of polymeric nanofibers. Rev. Sci. Instrum., 78, 085108(2007).

    [309] M. Dao et al. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater., 55, 4041(2007).

    [310] T. Zhu, J. Li. Ultra-strength materials. Prog. Mater. Sci., 55, 710(2010).

    [311] L. P. Dávila, V. J. Leppert, E. M. Bringa. The mechanical behavior and nanostructure of silica nanowires via simulations. Scr. Mater., 60, 843(2009).

    [312] F. L. Yuan, L. P. Huang. Size-dependent elasticity of amorphous silica nanowire: a molecular dynamics study. Appl. Phys. Lett., 103, 201905(2013).

    [313] S. Romeis et al. Correlation of enhanced strength and internal structure for heat-treated submicron stober silica particles. Part. Part. Syst. Charact., 31, 664(2014).

    [314] X. Q. Chen et al. Mechanical resonance of quartz microfibers and boundary condition effects. J. Appl. Phys., 95, 4823(2004).

    [315] E. C. Silva et al. Size effects on the stiffness of silica nanowires. Small, 2, 239(2006).

    [316] H. Ni, X. D. Li, H. S. Gao. Elastic modulus of amorphous SiO2 nanowires. Appl. Phys. Lett., 88, 043108(2006).

    [317] Z. W. Ma et al. Tensile strength and failure behavior of bare single mode fibers. Opt. Fiber Technol., 52, 101966(2019).

    [318] M. Guerette, L. P. Huang. Nonlinear elasticity of silica fibers studied by in-situ Brillouin light scattering in two-point bend test. Am. Ceram. Soc. Bull., 94, 40(2015).

    [319] M. Guerette et al. Nonlinear elasticity of silica glass. J. Am. Ceram. Soc., 99, 841(2015).

    [320] T. Fett et al. Effect of damage by hydroxyl generation on strength of silica fibers. J. Am. Ceram. Soc., 101, 2724(2018).

    [321] L. M. Tong et al. Assembly of silica nanowires on silica aerogels for microphotonic devices. Nano Lett., 5, 259(2005).

    [322] K. Zheng et al. Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nat. Commun., 1, 24(2010).

    [323] J. H. Luo et al. Size-dependent brittle-to-ductile transition in silica glass nanofibers. Nano Lett., 16, 105(2016).

    [324] X. Guo et al. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Lett., 9, 4515(2009).

    [325] X. Y. Li et al. All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics. Opt. Express, 21, 15698(2013).

    [326] H. K. Yu et al. Single nanowire optical correlator. Nano Lett., 14, 3487(2014).

    [327] C. G. Xin et al. Single CdTe nanowire optical correlator for femtojoule pulses. Nano Lett., 16, 4807(2016).

    [328] Z. X. Shi et al. Miniature optical correlator in a single-nanowire Sagnac loop. ACS Photonics, 7, 3264(2020).

    [329] J. B. Zhang et al. Single microwire optical autocorrelator at 2-μm wavelength. IEEE Photon. Technol. Lett., 34, 207(2022).

    [330] Z. X. Shi et al. Single-nanowire thermo-optic modulator based on a Varshni shift. ACS Photonics, 7, 2571(2020).

    [331] Y. X. Xu et al. Microfiber coupled superconducting nanowire single-photon detectors. Opt. Commun., 405, 48(2017).

    [332] L. X. You et al. Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths. Opt. Express, 25, 31221(2017).

    [333] X. T. Hou et al. Ultra-broadband microfiber-coupled superconducting single-photon detector. Opt. Express, 27, 25241(2019).

    [334] Z. Y. Zhang et al. Subwavelength-diameter silica wire for light in-coupling to silicon-based waveguide. Chin. Opt. Lett., 5, 577(2007).

    [335] X. W. Shen et al. Highly efficient fiber-to-chip evanescent coupling based on subwavelength-diameter optical fibers. Chin. Opt. Lett., 9, 050604(2011).

    [336] B. G. Chen et al. Flexible integration of free-standing nanowires into silicon photonics. Nat. Commun., 8, 20(2017).

    [337] S. Khan et al. Low-loss, high-bandwidth fiber-to-chip coupling using capped adiabatic tapered fibers. APL Photonics, 5, 056101(2020).

    [338] Y. Y. Jin et al. Efficient fiber-to-chip interface via an intermediated CdS nanowire. Laser Photon. Rev., 17, 2200919(2023).

    [339] G. Son et al. High-efficiency broadband light coupling between optical fibers and photonic integrated circuits. Nanophotonics, 7, 1845(2018).

    [340] W. L. Wu et al. Efficient mode conversion from a standard single-mode fiber to a subwavelength-diameter microfiber. Nanomaterials, 13, 3003(2023).

    [341] F. N. Xia et al. Two-dimensional material nanophotonics. Nat. Photonics, 8, 899(2014).

    [342] B. Guo et al. 2D layered materials: synthesis, nonlinear optical properties, and device applications. Laser Photon. Rev., 13, 1800327(2019).

    [343] J. Z. Wang et al. Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker. IEEE Photonics J., 4, 1295(2012).

    [344] X. Q. Wu et al. Effective transfer of micron-size graphene to microfibers for photonic applications. Carbon, 96, 1114(2016).

    [345] W. Li et al. Ultrafast all-optical graphene modulator. Nano Lett., 14, 955(2014).

    [346] J. H. Chen et al. An all-optical modulator based on a stereo graphene–microfiber structure. Light Sci. Appl., 4, e360(2015).

    [347] S. L. Yu et al. All-optical graphene modulator based on optical Kerr phase shift. Optica, 3, 541(2016).

    [348] M. Liu et al. Recent progress on applications of 2D material-decorated microfiber photonic devices in pulse shaping and all-optical signal processing. Nanophotonics, 9, 2641(2020).

    [349] B. Q. Jiang et al. High-efficiency second-order nonlinear processes in an optical microfibre assisted by few-layer GaSe. Light Sci. Appl., 9, 63(2020).

    [350] X. M. Liu et al. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers. Sci. Rep., 6, 26024(2016).

    [351] S. H. K. Yap et al. Two-dimensional MoS2 nanosheet-functionalized optical microfiber for room-temperature volatile organic compound detection. ACS Appl. Nano Mater., 4, 13440(2021).

    [352] A. W. Schell et al. Coupling quantum emitters in 2D materials with tapered fibers. ACS Photonics, 4, 761(2017).

    [353] J. H. Chen et al. Tunable and enhanced light emission in hybrid WS2-optical-fiber-nanowire structures. Light Sci. Appl., 8, 8(2019).

    [354] J. L. Xiao et al. Optical fibre taper-enabled waveguide photoactuators. Nat. Commun., 13, 363(2022).

    [355] S. M. Spillane et al. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett., 91, 043902(2003).

    [356] S. I. Shopova et al. Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection. Appl. Phys. Lett., 98, 243104(2011).

    [357] Z. Shen et al. Experimental realization of optomechanically induced non-reciprocity. Nat. Photonics, 10, 657(2016).

    [358] X. Y. Zhang et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photonics, 13, 21(2018).

    [359] B. Jiang et al. Room-temperature continuous-wave upconversion white microlaser using a rare-earth-doped microcavity. ACS Photonics, 9, 2956(2022).

    [360] Y. C. Dong, X. Y. Jin, K. Y. Wang. Packaged and robust microcavity device based on a microcylinder-taper coupling system. Appl. Opt., 54, 4016(2015).

    [361] X. Y. Lu et al. Heralding single photons from a high-Q silicon microdisk. Optica, 3, 1331(2016).

    [362] S. B. Gorajoobi, G. S. Murugan, M. N. Zervas. Design of rare-earth-doped microbottle lasers. Opt. Express, 26, 26339(2018).

    [363] D. Farnesi et al. Long period grating-based fiber coupler to whispering gallery mode resonators. Opt. Lett., 39, 6525(2014).

    [364] D. Farnesi et al. Quasi-distributed and wavelength selective addressing of optical micro-resonators based on long period fiber gratings. Opt. Express, 23, 21175(2015).

    [365] Y. G. Ma et al. Direct measurement of propagation losses in silver nanowires. Opt. Lett., 35, 1160(2010).

    [366] M. Sumetsky et al. Optical microfiber loop resonator. Appl. Phys. Lett., 86, 161108(2005).

    [367] M. Sumetsky et al. The microfiber loop resonator: theory, experiment, and application. J. Lightwave Technol., 24, 242(2006).

    [368] X. Guo et al. Demonstration of critical coupling in microfiber loops wrapped around a copper rod. Appl. Phys. Lett., 91, 073512(2007).

    [369] S. S. Wang et al. All-fiber Fabry-Perot resonators based on microfiber Sagnac loop mirrors. Opt. Lett., 34, 253(2009).

    [370] X. S. Jiang et al. Demonstration of optical microfiber knot resonators. Appl. Phys. Lett., 88, 223501(2006).

    [371] L. M. Xiao, T. A. Birks. High finesse microfiber knot resonators made from double-ended tapered fibers. Opt. Lett., 36, 1098(2011).

    [372] J. M. De Freitas, T. A. Birks, M. Rollings. Optical micro-knot resonator hydrophone. Opt. Express, 23, 5850(2015).

    [373] J. H. Li et al. Versatile hybrid plasmonic microfiber knot resonator. Opt. Lett., 42, 3395(2017).

    [374] Z. X. Ding et al. All-fiber ultrafast laser generating gigahertz-rate pulses based on a hybrid plasmonic microfiber resonator. Adv. Photonics, 2, 026002(2020).

    [375] P. Pal, W. H. Knox. Low loss fusion splicing of micron scale silica fibers. Opt. Express, 16, 11568(2008).

    [376] P. Pal, W. H. Knox. Fabrication and characterization of fused microfiber resonators. IEEE Photon. Technol. Lett., 21, 766(2009).

    [377] P. Wang et al. Fusion spliced microfiber closed-loop resonators. IEEE Photon. Technol. Lett., 22, 1075(2010).

    [378] W. Li et al. Fusion splicing soft glass microfibers for photonic devices. IEEE Photon. Technol. Lett., 23, 831(2011).

    [379] M. Sumetsky. Optical fiber microcoil resonators. Opt. Express, 12, 2303(2004).

    [380] M. Sumetsky, Y. Dulashko, M. Fishteyn. Demonstration of a multi-turn microfiber coil resonator(2007).

    [381] F. Xu, G. Brambilla. Manufacture of 3-D microfiber coil resonators. IEEE Photon. Technol. Lett., 19, 1481(2007).

    [382] F. Xu, P. Horak, G. Brambilla. Optimized design of microcoil resonators. J. Lightwave Technol., 25, 1561(2007).

    [383] F. Xu, P. Horak, G. Brambilla. Conical and biconical ultra-high-Q optical-fiber nanowire microcoil resonator. Appl. Opt., 46, 570(2007).

    [384] Y. Jung et al. Embedded optical microfiber coil resonator with enhanced high-Q. IEEE Photon. Technol. Lett., 22, 1638(2010).

    [385] Y. Wu et al. Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators. Sens. Actuator B-Chem., 155, 258(2011).

    [386] A. D. D. Le, Y. G. Han. Relative humidity sensor based on a few-mode microfiber knot resonator by mitigating the group index difference of a few-mode microfiber. J. Lightwave Technol., 36, 904(2018).

    [387] Y. G. Han. Relative humidity sensors based on microfiber knot resonators-a review. Sensors, 19, 5196(2019).

    [388] F. Xu, G. Brambilla. Embedding optical microfiber coil resonators in Teflon. Opt. Lett., 32, 2164(2007).

    [389] F. Xu, P. Horak, G. Brambilla. Optical microfiber coil resonator refractometric sensor. Opt. Express, 15, 7888(2007).

    [390] X. S. Jiang et al. All-fiber add-drop filters based on microfiber knot resonators. Opt. Lett., 32, 1710(2007).

    [391] X. S. Jiang et al. Demonstration of microfiber knot laser. Appl. Phys. Lett., 89, 143513(2006).

    [392] X. S. Jiang et al. Microfiber knot dye laser based on the evanescent-wave-coupled gain. Appl. Phys. Lett., 90, 233501(2007).

    [393] Q. Yang et al. Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity. Appl. Phys. Lett., 94, 101108(2009).

    [394] Z. L. Xu et al. Light velocity control in monolithic microfiber bridged ring resonator. Optica, 4, 945(2017).

    [395] Y. H. Li, L. M. Tong. Mach-Zehnder interferometers assembled with optical microfibers or nanofibers. Opt. Lett., 33, 303(2008).

    [396] J. H. Wo et al. Refractive index sensor using microfiber-based Mach-Zehnder interferometer. Opt. Lett., 37, 67(2012).

    [397] Y. H. Chen et al. Hybrid Mach-Zehnder interferometer and knot resonator based on silica microfibers. Opt. Commun., 283, 2953(2010).

    [398] X. Fang, C. R. Liao, D. N. Wang. Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing. Opt. Lett., 35, 1007(2010).

    [399] D. W. Cai et al. Mid-infrared microfiber Bragg gratings. Opt. Lett., 45, 6114(2020).

    [400] J. L. Kou et al. Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe. Opt. Express, 19, 18452(2011).

    [401] Y. X. Liu et al. Compact microfiber Bragg gratings with high-index contrast. Opt. Lett., 36, 3115(2011).

    [402] P. Romagnoli et al. Fabrication of optical nanofibre-based cavities using focussed ion-beam milling: a review. Appl. Phys. B, 126, 111(2020).

    [403] W. Liang et al. Highly sensitive fiber Bragg grating refractive index sensors. Appl. Phys. Lett., 86, 151122(2005).

    [404] R. Gao, J. Ye, X. Xin. Directional acoustic signal measurement based on the asymmetrical temperature distribution of the parallel microfiber array. Opt. Express, 27, 34113(2019).

    [405] S. M. Lee, S. S. Saini, M. Y. Jeong. Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors. IEEE Photon. Technol. Lett., 22, 1431(2010).

    [406] H. F. Xuan, W. Jin, M. Zhang. CO2 laser induced long period gratings in optical microfibers. Opt. Express, 17, 21882(2009).

    [407] Z. Y. Xu, Y. H. Li, L. J. Wang. Long-period grating inscription on polymer functionalized optical microfibers and its applications in optical sensing. Photonics Res., 4, 45(2016).

    [408] Y. Ran et al. Type IIa Bragg gratings formed in microfibers. Opt. Lett., 40, 3802(2015).

    [409] P. Xiao et al. Spectral tuning of the diameter-dependent-chirped Bragg gratings written in microfibers. Opt. Express, 24, 29750(2016).

    [410] F. Xu et al. A microfiber Bragg grating based on a microstructured rod: a proposal. IEEE Photon. Technol. Lett., 22, 218(2010).

    [411] D. Monzon-Hernandez et al. Optical microfibers decorated with PdAu nanoparticles for fast hydrogen sensing. Sens. Actuator B-Chem., 151, 219(2010).

    [412] J. Li et al. Refractive index sensor based on silica microfiber doped with Ag microparticles. Opt. Laser Technol., 94, 40(2017).

    [413] P. Wang et al. Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod. Nano Lett., 15, 7581(2015).

    [414] N. Zhou et al. Au nanorod-coupled microfiber optical humidity sensors. Opt. Express, 27, 8180(2019).

    [415] F. X. Gu et al. Free-space coupling of nanoantennas and whispering-gallery microcavities with narrowed linewidth and enhanced sensitivity. Laser Photon. Rev., 9, 682(2015).

    [416] Y. Y. Jin et al. Strong coupling of a plasmonic nanoparticle to a semiconductor nanowire. Nanophotonics, 10, 2875(2021).

    [417] N. Zhou et al. Strong mode coupling-enabled hybrid photon-plasmon laser with a microfiber-coupled nanorod. Sci. Adv., 8, eabn2026(2022).

    [418] Q. Ai et al. Ultranarrow second-harmonic resonances in hybrid plasmon-fiber cavities. Nano Lett., 18, 5576(2018).

    [419] Q. Ai et al. Giant second harmonic generation enhancement in a high-Q doubly resonant hybrid plasmon–fiber cavity system. ACS Nano, 15, 19409(2021).

    [420] Q. Ai et al. Multiphoton photoluminescence in hybrid plasmon–fiber cavities with Au and Au@Pd nanobipyramids: two-photon versus four-photon processes and rapid quenching. ACS Photonics, 8, 2088(2021).

    [421] F. Chiavaioli et al. Femtomolar detection by nanocoated fiber label-free biosensors. ACS Sens., 3, 936(2018).

    [422] Y. K. Liu et al. Plasmonic fiber-optic photothermal anemometers with carbon nanotube coatings. J. Lightwave Technol., 37, 3373(2019).

    [423] A. Leal-Junior et al. Highly sensitive fiber-optic intrinsic electromagnetic field sensing. Adv. Photon. Res., 2, 2000078(2020).

    [424] F. Chiavaioli, D. Janner. Fiber optic sensing with lossy mode resonances: applications and perspectives. J. Lightwave Technol., 39, 3855(2021).

    [425] M. Lobry et al. Plasmonic fiber grating biosensors demodulated through spectral envelopes intersection. J. Lightwave Technol., 39, 7288(2021).

    [426] J. Scheuer, M. Sumetsky. Optical-fiber microcoil waveguides and resonators and their applications for interferometry and sensing. Laser Photon. Rev., 5, 465(2011).

    [427] J. L. Kou et al. Microfiber-based Bragg gratings for sensing applications: a review. Sensors, 12, 8861(2012).

    [428] J. Y. Lou, Y. P. Wang, L. M. Tong. Microfiber optical sensors: a review. Sensors, 14, 5823(2014).

    [429] P. F. Wang et al. Optical microfibre based photonic components and their applications in label-free biosensing. Biosensors-Basel, 5, 471(2015).

    [430] G. Y. Chen, D. G. Lancaster, T. M. Monro. Optical microfiber technology for current, temperature, acceleration, acoustic, humidity and ultraviolet light sensing. Sensors, 18, 72(2017).

    [431] L. T. Gai, J. Li, Y. Zhao. Preparation and application of microfiber resonant ring sensors: a review. Opt. Laser Technol., 89, 126(2017).

    [432] Y. Peng et al. Research advances in microfiber humidity sensors. Small, 14, 1800524(2018).

    [433] Y. Wu et al. Optical graphene gas sensors based on microfibers: a review. Sensors, 18, 941(2018).

    [434] J. H. Chen, D. R. Li, F. Xu. Optical microfiber sensors: sensing mechanisms, and recent advances. J. Lightwave Technol., 37, 2577(2019).

    [435] Y. P. Li et al. Recent advances in microfiber sensors for highly sensitive biochemical detection. J. Phys. D-Appl. Phys., 52, 493002(2019).

    [436] Z. L. Ran et al. Fiber-optic microstructure sensors: a review. Photonic Sens., 11, 227(2021).

    [437] Y. N. Zhang et al. Microfiber knot resonators: structure, spectral properties, and sensing applications. Laser Photon. Rev., 18, 2300765(2024).

    [438] F. Warken et al. Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers. Opt. Express, 15, 11952(2007).

    [439] X. C. Yu et al. Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment. Adv. Mater., 26, 7462(2014).

    [440] X. C. Yu et al. Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field. Light Sci. Appl., 7, 18003(2018).

    [441] K. W. Li et al. Gold nanoparticle amplified optical microfiber evanescent wave absorption biosensor for cancer biomarker detection in serum. Talanta, 120, 419(2014).

    [442] Y. Y. Huang et al. A fiber-optic sensor for neurotransmitters with ultralow concentration: near-infrared plasmonic electromagnetic field enhancement using raspberry-like meso-SiO2 nanospheres. Nanoscale, 9, 14929(2017).

    [443] P. Xiao et al. Efficiently writing Bragg grating in high-birefringence elliptical microfiber for label-free immunosensing with temperature compensation. Adv. Fiber Mater., 3, 321(2021).

    [444] K. Q. Kieu, M. Mansuripur. Biconical fiber taper sensors. IEEE Photon. Technol. Lett., 18, 2239(2006).

    [445] W. B. Ji et al. Ultrahigh sensitivity refractive index sensor based on optical microfiber. IEEE Photon. Technol. Lett., 24, 1872(2012).

    [446] P. F. Wang et al. High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference. Opt. Lett., 36, 2233(2011).

    [447] G. Salceda-Delgado et al. Optical microfiber mode interferometer for temperature-independent refractometric sensing. Opt. Lett., 37, 1974(2012).

    [448] Q. Z. Sun et al. Multimode microfiber interferometer for dual-parameters sensing assisted by fresnel reflection. Opt. Express, 23, 12777(2015).

    [449] M. Z. Muhammad et al. Non-adiabatic silica microfiber for strain and temperature sensors. Sens. Actuator A-Phys., 192, 130(2013).

    [450] W. Li et al. High-sensitivity microfiber strain and force sensors. Opt. Commun., 314, 28(2014).

    [451] Y. Z. Zheng et al. Optical fiber magnetic field sensor based on magnetic fluid and microfiber mode interferometer. Opt. Commun., 336, 5(2015).

    [452] L. F. Luo et al. Highly sensitive magnetic field sensor based on microfiber coupler with magnetic fluid. Appl. Phys. Lett., 106, 193507(2015).

    [453] K. W. Li et al. Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference. Appl. Phys. Lett., 109, 13(2016).

    [454] Y. Chen et al. A miniature reflective micro-force sensor based on a microfiber coupler. Opt. Express, 22, 2443(2014).

    [455] S. L. Pu et al. Ultrasensitive refractive-index sensors based on tapered fiber coupler with Sagnac loop. IEEE Photon. Technol. Lett., 28, 1073(2016).

    [456] J. Y. Lou, L. M. Tong, Z. Z. Ye. Modeling of silica nanowires for optical sensing. Opt. Express, 13, 2135(2005).

    [457] A. A. Jasim et al. Microfibre Mach-Zehnder interferometer and its application as a current sensor. IET Optoelectron., 6, 298(2012).

    [458] H. P. Luo et al. Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach-Zehnder interferometer. Opt. Lett., 40, 5042(2015).

    [459] C. L. Hou et al. Novel high sensitivity accelerometer based on a microfiber loop resonator. Opt. Eng., 49, 014402(2010).

    [460] M. Belal et al. Optical fiber microwire current sensor. Opt. Lett., 35, 3045(2010).

    [461] G. Y. Chen et al. Resonantly enhanced Faraday rotation in an microcoil current sensor. IEEE Photon. Technol. Lett., 24, 860(2012).

    [462] X. D. Xie et al. A high-sensitivity current sensor utilizing CrNi wire and microfiber coils. Sensors, 14, 8423(2014).

    [463] G. Y. Chen, G. Brambilla, T. P. Newson. Compact acoustic sensor based on air-backed mandrel coiled with optical microfiber. Opt. Lett., 37, 4720(2012).

    [464] R. Lorenzi, Y. M. Jung, G. Brambilla. In-line absorption sensor based on coiled optical microfiber. Appl. Phys. Lett., 98, 173504(2011).

    [465] H. Y. Mei et al. Coiled optical nanofiber for optofluidic absorbance detection. ACS Sens., 4, 2267(2019).

    [466] W. Yu et al. Highly sensitive and fast response strain sensor based on evanescently coupled micro/nanofibers. Opto-Electron. Adv., 5, 210101(2022).

    [467] C. R. Liao, D. N. Wang, Y. Wang. Microfiber in-line Mach-Zehnder interferometer for strain sensing. Opt. Lett., 38, 757(2013).

    [468] I. Martincek, D. Kacik. A PDMS microfiber Mach-Zehnder interferometer and determination of nanometer displacements. Opt. Fiber Technol., 40, 13(2018).

    [469] K. J. Liu et al. Highly sensitive vibration sensor based on the dispersion turning point microfiber Mach-Zehnder interferometer. Opt. Express, 29, 32983(2021).

    [470] J. H. Li, J. H. Chen, F. Xu. Sensitive and wearable optical microfiber sensor for human health monitoring. Adv. Mater. Technol., 3, 1800296(2018).

    [471] S. S. Wang et al. Modeling seawater salinity and temperature sensing based on directional coupler assembled by polyimide-coated micro/nanofibers. Appl. Opt., 54, 10283(2015).

    [472] Y. X. Jiang et al. Highly sensitive temperature sensor using packaged optical microfiber coupler filled with liquids. Opt. Express, 26, 356(2018).

    [473] Y. G. Han. Investigation of temperature sensitivity of a polymer-overlaid microfiber Mach-Zehnder interferometer. Sensors, 17, 2403(2017).

    [474] A. A. Jasim et al. Inline microfiber Mach-Zehnder interferometer for high temperature sensing. IEEE Sens. J., 13, 626(2013).

    [475] Y. Wu et al. Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators. Opt. Express, 17, 18142(2009).

    [476] X. Zeng et al. A temperature sensor based on optical microfiber knot resonator. Opt. Commun., 282, 3817(2009).

    [477] J. Li et al. A high sensitivity temperature sensor based on packaged microfibre knot resonator. Sens. Actuator A-Phys., 263, 369(2017).

    [478] Y. T. Bai et al. Simultaneous measurement of relative humidity and temperature using a microfiber coupler coated with molybdenum disulfide nanosheets. Opt. Mater. Express, 9, 2846(2019).

    [479] Y. Z. Tan et al. Microfiber Mach-Zehnder interferometer based on long period grating for sensing applications. Opt. Express, 21, 154(2013).

    [480] H. P. Luo et al. Microfiber-based inline Mach-Zehnder interferometer for dual-parameter measurement. IEEE Photonics J., 7, 7100908(2015).

    [481] Z. Chen et al. Optically tunable microfiber-knot resonator. Opt. Express, 19, 14217(2011).

    [482] S. S. Pal et al. Etched multimode microfiber knot-type loop interferometer refractive index sensor. Rev. Sci. Instrum., 82, 095107(2011).

    [483] L. P. Sun et al. Miniature highly-birefringent microfiber loop with extremely-high refractive index sensitivity. Opt. Express, 20, 10180(2012).

    [484] S. C. Yan et al. Differential twin receiving fiber-optic magnetic field and electric current sensor utilizing a microfiber coupler. Opt. Express, 23, 9407(2015).

    [485] X. L. Li, H. Ding. All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid. Opt. Lett., 37, 5187(2012).

    [486] X. L. Li, H. Ding. Temperature insensitive magnetic field sensor based on ferrofluid clad microfiber resonator. IEEE Photon. Technol. Lett., 26, 2426(2014).

    [487] W. C. Zhou et al. Ultrasensitive label-free optical microfiber coupler biosensor for detection of cardiac troponin I based on interference turning point effect. Biosens. Bioelectron., 106, 99(2018).

    [488] Y. Zhang et al. Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating. Opt. Express, 18, 26345(2010).

    [489] Y. Ran et al. 193nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing. Opt. Express, 19, 18577(2011).

    [490] Y. X. Zhang et al. Magnetic field and temperature dual-parameter sensor based on nonadiabatic tapered microfiber cascaded with FBG. IEEE Access, 10, 15478(2022).

    [491] W. Luo et al. Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor. Appl. Phys. Lett., 101, 133502(2012).

    [492] Y. Wu et al. Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing. Opt. Lett., 39, 1235(2014).

    [493] D. D. Sun et al. In-situ DNA hybridization detection with a reflective microfiber grating biosensor. Biosens. Bioelectron., 61, 541(2014).

    [494] T. Liu et al. A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating. Biosens. Bioelectron., 100, 155(2018).

    [495] D. R. Li et al. Label-free fiber nanograting sensor for real-time in situ early monitoring of cellular apoptosis. Adv. Photonics, 4, 016001(2022).

    [496] R. Gao, M. Y. Zhang, Z. M. Qi. Miniature all-fibre microflown directional acoustic sensor based on crossed self-heated micro-Co2+-doped optical fibre Bragg gratings. Appl. Phys. Lett., 113, 134102(2018).

    [497] E. L. Song et al. Near-infrared microfiber Bragg grating for sensitive measurement of tension and bending. Opt. Express, 31, 15674(2023).

    [498] J. Villatoro, D. Monzon-Hernandez. Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers. Opt. Express, 13, 5087(2005).

    [499] L. Zhang et al. Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film. Opt. Express, 16, 13349(2008).

    [500] F. Schedin et al. Detection of individual gas molecules adsorbed on graphene. Nat. Mater., 6, 652(2007).

    [501] S. C. Yan et al. Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator. Appl. Phys. Lett., 107, 053502(2015).

    [502] Q. Z. Sun et al. Graphene-assisted microfiber for optical-power-based temperature sensor. IEEE Photon. Technol. Lett., 28, 383(2016).

    [503] S. Wang et al. Highly sensitive temperature sensor based on gain competition mechanism using graphene coated microfiber. IEEE Photonics J., 10, 6802008(2018).

    [504] C. B. Yu et al. Graphene oxide deposited microfiber knot resonator for gas sensing. Opt. Mater. Express, 6, 727(2016).

    [505] Y. Y. Huang et al. Ultrasensitive and in situ DNA detection in various pH environments based on a microfiber with a graphene oxide linking layer. Rsc Adv., 7, 14322(2017).

    [506] Y. Huang et al. Ultrafast response optical microfiber interferometric VOC sensor based on evanescent field interaction with ZIF-8/graphene oxide nanocoating. Adv. Opt. Mater., 10, 2101561(2022).

    [507] Y. Yin et al. Ultra-high-resolution detection of Pb2+ ions using a black phosphorus functionalized microfiber coil resonator. Photonics Res., 7, 622(2019).

    [508] G. W. Chen et al. Highly sensitive all-optical control of light in WS2 coated microfiber knot resonator. Opt. Express, 26, 27650(2018).

    [509] J. G. Chen et al. A microfiber sensor for the trace copper ions detection based on ternary sensitive film. Adv. Mater. Interfaces, 9, 2200491(2022).

    [510] H. T. Li et al. Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface. Sci. Adv., 5, eaax4659(2019).

    [511] N. M. Y. Zhang et al. One-step synthesis of cyclodextrin-capped gold nanoparticles for ultra-sensitive and highly-integrated plasmonic biosensors. Sens. Actuator B-Chem., 286, 429(2019).

    [512] A. X. Xiao et al. Ultrasensitive detection and cellular photothermal therapy via a self-photothermal modulation biosensor. Adv. Opt. Mater., 11, 2202711(2023).

    [513] S. P. Wang et al. Optical-nanofiber-enabled gesture-recognition wristband for human-machine interaction with the assistance of machine learning. Adv. Intell. Syst., 5, 2200412(2023).

    [514] H. T. Zhu et al. Spatiotemporal hemodynamic monitoring via configurable skin-like microfiber Bragg grating group. Opto-Electron. Adv., 6, 230018(2023).

    [515] S. Q. Ma et al. Optical micro/nano fibers enabled smart textiles for human-machine interface. Adv. Fiber Mater., 4, 1108(2022).

    [516] H. T. Liu et al. Optical microfibers for sensing proximity and contact in human-machine interfaces. ACS Appl. Mater. Interfaces, 14, 14447(2022).

    [517] L. Y. Li et al. Wearable alignment-free microfiber-based sensor chip for precise vital signs monitoring and cardiovascular assessment. Adv. Fiber Mater., 4, 475(2022).

    [518] Y. Tang et al. Optical micro/nanofiber-enabled compact tactile sensor for hardness discrimination. ACS Appl. Mater. Interfaces, 13, 4560(2021).

    [519] Z. Zhang et al. Optical micro/nanofibre embedded soft film enables multifunctional flow sensing in microfluidic chips. Lab Chip, 20, 2572(2020).

    [520] Z. Zhang et al. A multifunctional airflow sensor enabled by optical micro/nanofiber. Adv. Fiber Mater., 3, 359(2021).

    [521] H. T. Zhu et al. Self-assembled wavy optical microfiber for stretchable wearable sensor. Adv. Opt. Mater., 9, 2002206(2021).

    [522] C. P. Jiang et al. Finger-skin-inspired flexible optical sensor for force sensing and slip detection in robotic grasping. Adv. Mater. Technol., 6, 2100285(2021).

    [523] R. Y. Zhao et al. Research on acoustic sensing device based on microfiber knot resonator. J. Micromech. Microeng., 32, 085003(2022).

    [524] Z. L. Xu et al. Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect. Opt. Express, 23, 6662(2015).

    [525] Y. T. Yi et al. High-performance ultrafast humidity sensor based on microknot resonator-assisted Mach-Zehnder for monitoring human breath. ACS Sens., 5, 3404(2020).

    [526] Z. Zhang et al. A new route for fabricating polymer optical microcavities. Nanoscale, 11, 5203(2019).

    [527] P. P. Niu et al. High-sensitive and disposable myocardial infarction biomarker immunosensor with optofluidic microtubule lasing. Nanophotonics, 11, 3351(2022).

    [528] W. Luo, F. Xu, Y. Q. Lu. Reconfigurable optical-force-drive chirp and delay line in micro- or nanofiber Bragg grating. Phys. Rev. A, 91, 053831(2015).

    [529] R. Gauthier. Computation of the optical trapping force using an FDTD based technique. Opt. Express, 13, 3707(2005).

    [530] Z. H. Liu et al. Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application. Opt. Express, 14, 12510(2006).

    [531] L. Novotny, B. Hecht. Principles of nano-optics(2012).

    [532] G. Brambilla et al. Optical manipulation of microspheres along a subwavelength optical wire. Opt. Lett., 32, 3041(2007).

    [533] L. L. Xu, Y. Li, B. J. Li. Size-dependent trapping and delivery of submicro-spheres using a submicrofibre. New J. Phys., 14, 033020(2012).

    [534] H. X. Lei et al. Bidirectional optical transportation and controllable positioning of nanoparticles using an optical nanofiber. Nanoscale, 4, 6707(2012).

    [535] Y. Zhang, B. J. Li. Particle sorting using a subwavelength optical fiber. Laser Photon. Rev., 7, 289(2013).

    [536] H. B. Xin, C. Cheng, B. J. Li. Trapping and delivery of Escherichia coli in a microfluidic channel using an optical nanofiber. Nanoscale, 5, 6720(2013).

    [537] A. Maimaiti et al. Higher order microfibre modes for dielectric particle trapping and propulsion. Sci. Rep., 5, 9077(2015).

    [538] A. Maimaiti et al. Nonlinear force dependence on optically bound micro-particle arrays in the evanescent fields of fundamental and higher order microfibre modes. Sci. Rep., 6, 30131(2016).

    [539] F. Le Kien, A. Rauschenbeutel. Negative azimuthal force of nanofiber-guided light on a particle. Phys. Rev. A, 88, 063845(2013).

    [540] G. Tkachenko et al. Light-induced rotation of dielectric microparticles around an optical nanofiber. Optica, 7, 59(2020).

    [541] J. S. Lu et al. Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force. Phys. Rev. Lett., 118, 043601(2017).

    [542] W. W. Tang et al. Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime. Light Sci. Appl., 10, 193(2021).

    [543] W. Lyu et al. Light-induced in-plane rotation of microobjects on microfibers. Laser Photon. Rev., 16, 2100561(2022).

    [544] W. Lyu et al. Nanomotion of micro-objects driven by light-induced elastic waves on solid interfaces. Phys. Rev. Appl., 19, 024049(2023).

    [545] S. Y. Linghu et al. Plasmon-driven nanowire actuators for on-chip manipulation. Nat. Commun., 12, 385(2021).

    [546] H. Fujiwara et al. Optical selection and sorting of nanoparticles according to quantum mechanical properties. Sci. Adv., 7, eabd9551(2021).

    [547] Y. H. Li et al. Modeling rare-earth doped microfiber ring lasers. Opt. Express, 14, 7073(2006).

    [548] W. Fan et al. Tunable dual-wavelength narrow-linewidth microfiber laser. Appl. Phys. Express, 6, 072701(2013).

    [549] Z. S. Zhang et al. Single-frequency microfiber single-knot laser. Appl. Phys. Express, 6, 042702(2013).

    [550] W. Fan et al. A wavelength tunable single frequency microfiber laser. Laser Physics Letters, 11, 015104(2014).

    [551] V. D. Ta et al. Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber. Laser Photon. Rev., 7, 133(2013).

    [552] S. C. Yang, Y. Wang, H. D. Sun. Advances and prospects for whispering gallery mode microcavities. Adv. Opt. Mater., 3, 1136(2015).

    [553] F. X. Gu et al. Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering. Light Sci. Appl., 6, e17061(2017).

    [554] F. M. Xie et al. Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators. Photonics Res., 5, B29(2017).

    [555] P. L. Yang et al. 65-fs Yb-doped all-fiber laser using tapered fiber for nonlinearity and dispersion management. Opt. Lett., 43, 1730(2018).

    [556] A. Al-Kadry et al. Mode-locked fiber laser based on chalcogenide microwires. Opt. Lett., 40, 4309(2015).

    [557] V. I. Balykin et al. Atom trapping and guiding with a subwavelength-diameter optical fiber. Phys. Rev. A, 70, 011401(2004).

    [558] F. Le Kien, V. I. Balykin, K. Hakuta. Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber. Phys. Rev. A, 70, 063403(2004).

    [559] E. Vetsch et al. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys. Rev. Lett., 104, 203603(2010).

    [560] J. D. Thompson et al. Coupling a single trapped atom to a nanoscale optical cavity. Science, 340, 1202(2013).

    [561] A. Goban et al. Superradiance for atoms trapped along a photonic crystal waveguide. Phys. Rev. Lett., 115, 063601(2015).

    [562] J. Fu et al. Atom waveguide and 1D optical lattice using a two-color evanescent light field around an optical micro/nano-fiber. Chin. Opt. Lett., 6, 112(2008).

    [563] S. T. Dawkins et al. Dispersive optical interface based on nanofiber-trapped atoms. Phys. Rev. Lett., 107, 243601(2011).

    [564] A. Goban et al. Demonstration of a state-insensitive, compensated nanofiber trap. Phys. Rev. Lett., 109, 033603(2012).

    [565] D. Reitz et al. Coherence properties of nanofiber-trapped cesium atoms. Phys. Rev. Lett., 110, 243603(2013).

    [566] J. B. Béguin et al. Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice. Phys. Rev. Lett., 113, 263603(2014).

    [567] J. A. Grover et al. Photon-correlation measurements of atomic-cloud temperature using an optical nanofiber. Phys. Rev. A, 92, 013850(2015).

    [568] K. P. Nayak, J. Wang, J. Keloth. Real-time observation of single atoms trapped and interfaced to a nanofiber cavity. Phys. Rev. Lett., 123, 213602(2019).

    [569] Y. Meng et al. Imaging and localizing individual atoms interfaced with a nanophotonic waveguide. Phys. Rev. Lett., 125, 053603(2020).

    [570] R. Pennetta et al. Collective radiative dynamics of an ensemble of cold atoms coupled to an optical waveguide. Phys. Rev. Lett., 128, 073601(2022).

    [571] S. Pucher et al. Atomic spin-controlled non-reciprocal Raman amplification of fibre-guided light. Nat. Photonics, 16, 380(2022).

    [572] A. K. Patnaik, J. Q. Liang, K. Hakuta. Slow light propagation in a thin optical fiber via electromagnetically induced transparency. Phys. Rev. A, 66, 063808(2002).

    [573] B. Gouraud et al. Demonstration of a memory for tightly guided light in an optical nanofiber. Phys. Rev. Lett., 114, 180503(2015).

    [574] C. Sayrin et al. Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms. Optica, 2, 353(2015).

    [575] S. Kato, T. Aoki. Strong coupling between a trapped single atom and an all-fiber cavity. Phys. Rev. Lett., 115, 093603(2015).

    [576] S. K. Ruddell et al. Collective strong coupling of cold atoms to an all-fiber ring cavity. Optica, 4, 576(2017).

    [577] R. Yalla et al. Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity. Phys. Rev. Lett., 113, 143601(2014).

    [578] H. Takashima et al. Detailed numerical analysis of photon emission from a single light emitter coupled with a nanofiber Bragg cavity. Opt. Express, 24, 15050(2016).

    [579] W. F. Li, J. J. Du, S. Nic Chormaic. Tailoring a nanofiber for enhanced photon emission and coupling efficiency from single quantum emitters. Opt. Lett., 43, 1674(2018).

    [580] D. Ðonlagić. In-line higher order mode filters based on long highly uniform fiber tapers. J. Lightwave Technol., 24, 3532(2006).

    [581] Y. Chen et al. Compact optical short-pass filters based on microfibers. Opt. Lett., 33, 2565(2008).

    [582] Y. Jung, G. Brambilla, D. J. Richardson. Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter. Opt. Express, 16, 14661(2008).

    [583] Y. Jung, G. Brambilla, D. J. Richardson. Optical microfiber coupler for broadband single-mode operation. Opt. Express, 17, 5273(2009).

    [584] C. R. Liao et al. Twisted optical microfibers for refractive index sensing. IEEE Photon. Technol. Lett., 23, 848(2011).

    [585] M. Ding, P. F. Wang, G. Brambilla. A microfiber coupler tip thermometer. Opt. Express, 20, 5402(2012).

    [586] Y. Yu et al. High sensitivity all optical fiber conductivity-temperature-depth (CTD) sensing based on an optical microfiber coupler (OMC). J. Lightwave Technol., 37, 2739(2019).

    [587] S. L. Yu et al. Graphene decorated microfiber for ultrafast optical modulation. Opt. Express, 23, 10764(2015).

    [588] S. L. Yu et al. 2D materials for optical modulation: challenges and opportunities. Adv. Mater., 29, 1606128(2017).

    [589] X. T. Gan et al. Graphene-assisted all-fiber phase shifter and switching. Optica, 2, 468(2015).

    [590] Y. Z. Wang et al. All-optical phosphorene phase modulator with enhanced stability under ambient conditions. Laser Photon. Rev., 12, 1800016(2018).

    [591] X. Y. Wang et al. Two-dimensional material integrated micro-nano fiber, the new opportunity in all-optical signal processing. Nanophotonics, 12, 2073(2023).

    [592] Q. Q. Cen et al. Microtaper leaky-mode spectrometer with picometer resolution. eLight, 3, 9(2023).

    [593] X. Wang et al. Subwavelength focusing by a micro/nanofiber array. J. Opt. Soc. Am. A, 26, 1827(2009).

    [594] X. Hao et al. Far-field super-resolution imaging using near-field illumination by micro-fiber. Appl. Phys. Lett., 102, 013104(2013).

    [595] Y. J. Yang et al. Topological pruning enables ultra-low Rayleigh scattering in pressure-quenched silica glass. npj Comput. Mater., 6, 139(2020).

    Jianbin Zhang, Hubiao Fang, Pan Wang, Wei Fang, Lei Zhang, Xin Guo, Limin Tong. Optical microfiber or nanofiber: a miniature fiber-optic platform for nanophotonics[J]. Photonics Insights, 2024, 3(1): R02
    Download Citation