[1] X.-J.Chen, Y.Ding, B.Li, H.-K.Mao, L.Wang. Solids, liquids, and gases under high pressure. Rev. Mod. Phys., 90, 015007(2018).
[2] J.Lv, Y.Ma, Y.Wang, L.Zhang. Materials discovery at high pressures. Nat. Rev. Mater., 2, 17005(2017).
[3] B.Chen, J.Chen, K.Li, J.-F.Lin, H.-K.Mao, W.Yang, H.Zheng. Recent advances in high-pressure science and technology. Matter Radiat. Extremes, 1, 59(2016).
[4] Z.Cai, J.Chen, C.Ji, B.Li, W.Liu, H.-k.Mao, J.Wang, R.Xu, K.Yang, W.Yang. Diamond anvil cell behavior up to 4 Mbar. Proc. Natl. Acad. Sci. U. S. A., 115, 1713(2018).
[5] V. I.Levitas. High pressure phase transformations revisited. J. Phys.: Condens. Matter, 30, 163001(2018).
[6] P. W.Bridgman, E. A.Mason. Collected experimental papers of P. W. Bridgman. Am. J. Phys., 33, 516(1965).
[7] J. D.Barnett, S.Block, G. J.Piermarini. Hydrostatic limits in liquids and solids to 100 kbar. J. Appl. Phys., 44, 5377(1973).
[8] J. M.Besson, J. P.Pinceaux. Melting of helium at room temperature and high pressure. Science, 206, 1073(1979).
[9] P. M.Bell, L. W.Finger, R. M.Hazen, H. K.Mao, G.Zou. Structure and compression of crystalline argon and neon at high pressure and room temperature. Appl. Phys. Lett., 39, 892(1981).
[10] J. D.Barnett, S.Block, R. A.Forman, G. J.Piermarini. Pressure measurement made by the utilization of ruby sharp-line luminescence. Science, 176, 284(1972).
[11] J.-C.Chervin, S.Klotz, G.Le Marchand, P.Munsch. Hydrostatic limits of 11 pressure transmitting media. J. Phys. D: Appl. Phys., 42, 075413(2009).
[12] P. W.Bridgman. Further rough compressions to 40,000 Kg/Cm: Especially certain liquids. Am. Acad. Arts Sci., 77, 129(1949).
[13] R. z.Che, L. c.Chen, J. H.Eggert, J. f.Wang, L. w.Xu. High pressure refractive index measurements of 4:1 methanol:ethanol. J. Appl. Phys., 72, 2453(1992).
[14] M. H.Kuok, Z. X.Shen, S. H.Tang, X. B.Wang. Near infrared excited micro-Raman spectra of 4:1 methanol–ethanol mixture and ruby fluorescence at high pressure. J. Appl. Phys., 85, 8011(1999).
[15] R. J.Angel, M.Bujak, G. D.Gatta, S. D.Jacobsen, J.Zhao. Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J. Appl. Crystallogr., 40, 26(2007).
[16] D. M.Adams, R.Appleby, S. K.Sharma. Spectroscopy at very high pressures. X. Use of ruby R-lines in the estimation of pressure at ambient and at low temperatures. J. Phys. E: Sci. Instrum., 9, 1140(1976).
[17] D. R.Clarke, D. D.Ragan, D.Schiferl. Silicone fluid as a high-pressure medium in diamond anvil cells. Rev. Sci. Instrum., 67, 494(1996).
[18] R. S.Kumar, M. F.Nicol, M.Pravica, Y.Shen. Characteristics of silicone fluid as a pressure transmitting medium in diamond anvil cells. Rev. Sci. Instrum., 75, 4450(2004).
[19] W.-P.Hsieh. Thermal conductivity of methanol-ethanol mixture and silicone oil at high pressures. J. Appl. Phys., 117, 235901(2015).
[20] A. S.Kirichenko, A. V.Kornilov, V. M.Pudalov. Properties of polyethylsiloxane as a pressure-transmitting medium. Instrum. Exp. Tech., 48, 813(2005).
[21] S.Aoyama, K.Iizuka, A.Irizawa, S.Klotz, P.Munsch, K.Murata, T.Nanba, M.Nishiyama, T.Okada, Y.Shiraga, K.Yokogawa, H.Yoshino. Pressure transmitting medium Daphne 7474 solidifying at 3.7 GPa at room temperature. Rev. Sci. Instrum., 79, 085101(2008).
[22] O.Sandberg, B.Sundqvist. Thermal properties of two low viscosity silicon oils as functions of temperature and pressure. J. Appl. Phys., 53, 8751(1982).
[23] B.Sundqvist. Comment on “Characteristics of silicone fluid as a pressure transmitting medium in diamond anvil cells” [Rev. Sci. Instrum.
[24] Y.Haga, N.Tateiwa. Evaluations of pressure-transmitting media for cryogenic experiments with diamond anvil cell. Rev. Sci. Instrum., 80, 123901(2009).
[25] B.Grocholski, R.Jeanloz. High-pressure and -temperature viscosity measurements of methanol and 4:1 methanol:ethanol solution. J. Chem. Phys., 123, 204503(2005).
[26] C.Chen, B.Han, F.Huang, X.Huang, F.Li, J.Wang, K.Wang, X.Wang, M.Yao, Q.Zhou. Acoustic and elastic properties of silicone oil under high pressure. RSC Adv., 5, 38056(2015).
[27] J. M.Besson, B.Canny, J. C.Chervin, P.Pruzan. A diamond anvil cell for IR microspectroscopy. Rev. Sci. Instrum., 66, 2595(1995).
[28] B.Canny, J. C.Chervin, M.Mancinelli. Ruby-spheres as pressure gauge for optically transparent high pressure cells. High Pressure Res., 21, 305(2001).
[30] S.Aoki, M.Klicpera, K.Murata, J.Prchal, D.Sta?ko. Pressure media for high pressure experiments, Daphne oil 7000 series. High Pressure Res., 40, 525(2020).
[31] S. E. Babb, L. E.Reeves, G. J.Scott. Melting curves of pressure‐transmitting fluids. J. Chem. Phys., 40, 3662(1964).
[32] V. V.Brazhkin, Y.Katayama, A. G.Lyapin, H.Saitoh, O. F.Yagafarov. Energy dispersive x-ray diffraction and reverse Monte Carlo structural study of liquid gallium under pressure. Phys. Rev. B, 86, 174103(2012).
[33] P.Chirawatkul, H. E.Fischer, Y.Kawakita, P. S.Salmon, S. i.Takeda, T.Usuki, A.Zeidler. Structure of eutectic liquids in the Au–Si, Au–Ge, and Ag–Ge binary systems by neutron diffraction. Phys. Rev. B, 83, 014203(2011).
[34] F.Birch. Elasticity and constitution of the earth interior. J. Geophys. Res., 57, 227(1952).
[35] V. G.Baonza, M.Cáceres, S.Casado, H. E.Lorenzana, M.Taravillo. Direct measurement of the liquid 4:1 methanol–ethanol equation of state up to 5 GPa. High Pressure Res., 28, 637(2008).
[36] F.Camargo, V.Lemos. Effects of pressure on the Raman spectra of a 4:1 methanol–ethanol mixture. J. Raman Spectrosc., 21, 123(1990).
[37] H. H.Günthard, R.Meyer, A.Serrallach. Methanol and deuterated species: Infrared data, valence force field, rotamers, and conformation. J. Mol. Spectrosc., 52, 94(1974).
[38] J. W.Brasch, R. J.Jakobsen, Y.Mikawa. Polarized infrared spectra of single crystals of ethyl alcohol. Spectrochim. Acta, Part A, 27, 529(1971).
[39] I.Artaki, M.Bradley, J.Jonas, T. W.Zerda. NMR and Raman study of the hydrolysis reaction in sol-gel processes. J. Phys. Chem., 89, 4399(1985).
[40] B. W.van de Waal. On the origin of second-peak splitting in the static structure factor of metallic glasses. J. Non-Cryst. Solids, 189, 118(1995).
[41] Y.Kono, Y.Lin, H. K.Mao, W. L.Mao, Y.Meng, C.Park, S. V.Sinogeikin, J. Y.Wang, W. G.Yang, Q. S.Zeng, Z. D.Zeng. Universal fractional noncubic power law for density of metallic glasses. Phys. Rev. Lett., 112, 185502(2014).