• Infrared and Laser Engineering
  • Vol. 51, Issue 1, 20210988 (2022)
Yi Cai
Author Affiliations
  • Shenzhen Polaris Innovation Research Institute, Shenzhen 518000, China
  • show less
    DOI: 10.3788/IRLA20210988 Cite this Article
    Yi Cai. Review and prospect of HgCdTe detectors (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210988 Copy Citation Text show less
    Comparison of the D* of various available detectors when operated at the indicated temperature and in the region of 1−10 000 μm waveband[4]
    Fig. 1. Comparison of the D* of various available detectors when operated at the indicated temperature and in the region of 1−10 000 μm waveband[4]
    Hybrid HgCdTe IRFPA detector with independently optimized signal detection and readout. (a) Indium column flip chip interconnection; (b) Loophole interconnection[5]
    Fig. 2. Hybrid HgCdTe IRFPA detector with independently optimized signal detection and readout. (a) Indium column flip chip interconnection; (b) Loophole interconnection[5]
    Development roadmap and memorabilia for the first generation to the fourth generation of infrared detectors[4]
    Fig. 3. Development roadmap and memorabilia for the first generation to the fourth generation of infrared detectors[4]
    H2 RG 2 048×2 048 HgCdTe FPA detector[6]
    Fig. 4. H2 RG 2 048×2 048 HgCdTe FPA detector[6]
    2 048×2 048 HgCdTe FPA used in the Space Telescope Near Infrared Camera[6]
    Fig. 5. 2 048×2 048 HgCdTe FPA used in the Space Telescope Near Infrared Camera[6]
    Quantum efficiency of the H2 RG 2 048×2 048 HgCdTe FPA with 0.8-1.7 μm cutoff which CdZnTe substrate was removed[7]
    Fig. 6. Quantum efficiency of the H2 RG 2 048×2 048 HgCdTe FPA with 0.8-1.7 μm cutoff which CdZnTe substrate was removed[7]
    Euclid focal plane assembly with 16 H2 RG FPA (2048×2048) (a) and the measured quantum efficiencies (b)[7]
    Fig. 7. Euclid focal plane assembly with 16 H2 RG FPA (2048×2048) (a) and the measured quantum efficiencies (b)[7]
    H4 RG 4 096×4 096 HgCdTe FPA assembly[8]
    Fig. 8. H4 RG 4 096×4 096 HgCdTe FPA assembly[8]
    (a) Cross-section of Raytheon’s single-mesa dual-band pixel architecture applied to HgCdTe on Si grown by MBE; (b) Scanning electron micrograph of dual-band pixels [9]
    Fig. 9. (a) Cross-section of Raytheon’s single-mesa dual-band pixel architecture applied to HgCdTe on Si grown by MBE; (b) Scanning electron micrograph of dual-band pixels [9]
    Two-color HgCdTe IR detective structure on GaAs grown by MBE[10]
    Fig. 10. Two-color HgCdTe IR detective structure on GaAs grown by MBE[10]
    Two-color n-p-n HgCdTe IR detective structure on CdZnTe grown by MBE[11]. (a) Side view; (b) Stereoscopic view
    Fig. 11. Two-color n-p-n HgCdTe IR detective structure on CdZnTe grown by MBE[11]. (a) Side view; (b) Stereoscopic view
    (a) Energy band diagram illustrating the dark current mechanisms for a HgCdTe p-n junction[12]; (b) Energy band diagrams of HgCdTe n+-Bn-n junction[13]
    Fig. 12. (a) Energy band diagram illustrating the dark current mechanisms for a HgCdTe p-n junction[12]; (b) Energy band diagrams of HgCdTe n+-Bn-n junction[13]
    Calculated detectivity for p-on-n HgCdTe detector plotted versus operating temperature for four important wavelength regions[14]
    Fig. 13. Calculated detectivity for p-on-n HgCdTe detector plotted versus operating temperature for four important wavelength regions[14]
    Dark current as a function of temperature and cutoff wavelengthfor HgCdTe focal plane detector[7]
    Fig. 14. Dark current as a function of temperature and cutoff wavelengthfor HgCdTe focal plane detector[7]
    Main specifications of HOT HAWK MWIR focal plane detector operated at 155 K (a) and relationship of temperature with current density (b)[15]
    Fig. 15. Main specifications of HOT HAWK MWIR focal plane detector operated at 155 K (a) and relationship of temperature with current density (b)[15]
    Relationship between operating temperature and cooling type of HgCdTe focal plane detector in MWIR, LWIR and VLWIR [7]
    Fig. 16. Relationship between operating temperature and cooling type of HgCdTe focal plane detector in MWIR, LWIR and VLWIR [7]
    Schematic illustration of HgCdTe APDs architecture[16]
    Fig. 17. Schematic illustration of HgCdTe APDs architecture[16]
    Schematic of the HDVIP structure HgCdTe APD of DRS Company[19-20]. (a) Side view; (b) Top view
    Fig. 18. Schematic of the HDVIP structure HgCdTe APD of DRS Company[19-20]. (a) Side view; (b) Top view
    Schematic of HgCdTe APDs by DRS using 2×8 HDVIP p-around-n cylindrical structure. (a) Top view; (b) Side view [18]
    Fig. 19. Schematic of HgCdTe APDs by DRS using 2×8 HDVIP p-around-n cylindrical structure. (a) Top view; (b) Side view [18]
    DRS mini-Stirling cryocooler for the 2×8-pixel HgCdTe FPA[18]
    Fig. 20. DRS mini-Stirling cryocooler for the 2×8-pixel HgCdTe FPA[18]
    Measurement of the DRS HgCdTe APD responsivity(a) and NEP(b) as a function of the APD bias voltage[18]
    Fig. 21. Measurement of the DRS HgCdTe APD responsivity(a) and NEP(b) as a function of the APD bias voltage[18]
    Property xHgTe 0 Hg1−xCdxTe CdTe 1.0
    0.1940.2050.2250.310.440.62
    a/Å 6.4616.4646.4646.4646.4656.4686.4726.481
    77 K77 K77 K77 K140 K200 K250 K300 K
    Eg/eV −0.2610.0730.0910.1230.2720.4740.7491.490
    λc/μm 16.913.610.14.62.61.70.8
    ni/cm−31.9 × 10145.8 × 1 01363 × 10123.7 × 10127.1 × 10113.1 × 10104.1 × 105
    mc/ m00.0060.0070.0100.0210.0350.0530.102
    gc−150−118−84−33−15−7−1.2
    εs/ε020.018.218.117.917.115.914.210.6
    εs/ε014.412.812.712.511.910.89.36.2
    nr3.793.583.573.543.443.293.062.50
    μc/cm2·V−1·s−14.5 × 1053.0 × 1051.0 × 105
    μh/cm2·V−1·s−1450450450
    b=μc/μ$_ \eta$1 000667222
    τR/μs16.513.910.411.311.210.62
    τAl/μs0.450.851.839.64534.75 × 103
    τtypical/μs0.40.817
    Ep/eV 19
    $\Delta $/eV 0.93
    mhh/m00.40-0.53
    $\Delta $/eV 0.35-0.55
    Table 1. Important alloy compositions and physical parameters for Hg1−xCdxTe
    BulkLiquid phase epitaxyVapour phase epitaxy
    SSRTravelling heater method
    HCT meltTe meltHg meltTe melt MOCVDMBE
    Temperature/℃950950500350-550400-550275-400160-200
    Pressure/torr150 000150 000760-8 000760-11 400760-8 000300-76010−3-104
    Growth rate/μm·h−12502508030-605-602-101-5
    Dimensions/cm0.8-1.2 dia0.8-1.2 dia2.5 dia557.5 dia7.5 dia
    l/cm ---6544
    t/cm 151550.000 2-0.003 00.000 5-0.0120.000 5-0.0010.000 5-0.001
    Dislocations/cm−2<105-<105<105<105-1075 × 105-5 ×107<5 × 104-5 ×106
    Purity/cm−3<5 × 1014<5 × 1014<5 × 1014<5 × 1014<5 × 1014<1× 1015<1 × 1015
    n-type doping/cm−3N/AN/AN/A1 × 1014-1 × 10181 × 1015-1 × 10165 × 1014-1 × 10185 × 1014-1 × 1019
    p-type doping/cm−3N/AN/AN/A1 × 1015-1 × 10181 × 1015-1 × 10163 × 1015-1 × 10175 × 1016-1 × 1018
    X-ray rocking curve/(")--20-60<20<2050-9020-30
    Compositional uniformity (Δx) <0.002<0.004<0.005<0.002<0.002±0.01-0.000 5±0.01-0.000 6
    Table 2. Comparison of the various methods used to grow HgCdTe, including bulk, LPE, MOCVD, and MBE[5]
    Yi Cai. Review and prospect of HgCdTe detectors (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210988
    Download Citation