• Journal of Infrared and Millimeter Waves
  • Vol. 30, Issue 4, 354 (2011)
ZHANG Xiu-Wei*, ZHANG Yan-Ning, GUO Zhe, ZHAO Jing, and TONG Xiao-Min
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    ZHANG Xiu-Wei, ZHANG Yan-Ning, GUO Zhe, ZHAO Jing, TONG Xiao-Min. Advances and perspective on motion detection fusion in visual and thermal framework[J]. Journal of Infrared and Millimeter Waves, 2011, 30(4): 354 Copy Citation Text show less
    References

    [1] Caloz C, Itoh T. Electromagnetic metamaterials: transmission line theory and microwave applications: the engineering approach[M]. New Jersey: John Wiley & Sons, Inc.,2006:2-3.

    [2] Veselago V G. The electrodynamics of substances with simultanenous negative values of ε and μ[J]. Sov. Phys. Usp.,1968,10(4):509-514.

    [3] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science,2001,292(5514):77-79.

    [4] Smith D R, Schurig D, Rosenbluth M, et al. Limitations on subdiffraction imaging with a negative refractive index slab[J]. Appl. Phys. Lett.,2003,82(10):1506-1508.

    [5] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science,2006,314(5801):977-980.

    [6] Enoch S, Tayeb G, Sabouroux P, et al. A metamaterial for directive emission[J]. Phys. Rev. Lett.,2002,89(21):3902-3905.

    [7] Wiltshire M C K, Pendry J B, Young I R, et al. Microstructured magnetic materials for RF flux guides in magnetic resonance imaging[J]. Science,2001,291(5505):849-851.

    [8] Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Phys. Rev. Lett.,2000,84(18):4184-4187.

    [9] Gokkavas M, Guven K, Bulu I, et al. Experimental demonstration of a left-handed metamaterial operating at 100 GHz[J]. Phys. Rev. B,2006,73(19):3103-3106.

    [10] Yen T J, Padilla W J, Fang N, et al. Terahertz magnetic response from artificial materials[J]. Science,2004,303(5663):1494-1496.

    [11] Linden S, Enkrich C, Wegener M, et al. Magnetic response of metamaterials at 100 terahertz[J]. Science,2004,306(5700):1351-1353.

    [12] Zhang S, Fan W, Panoiu N C, et al. Experimental demonstration of near-infrared negative-index metamaterials[J]. Phys. Rev. Lett.,2005,95(13):7404-7407.

    [13] Dolling G, Wegener M, Soukoulis C M, et al. Realization of a three-functional-layer negative-index photonic metamaterial[J]. Opt. Lett.,2007,32(5):551-553.

    [14] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Phys. Rev. Lett.,2008,100(20):7402-7405.

    [15] Tao H, Landy N I, Bingham C M, et al. A metamaterial absorber for the terahertz regime: design, fabrication and characterization[J]. Opt. Express,2008,16(10):7181-7188.

    [16] Landy N I, Bingham C M, Tyler T, et al. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging[J]. Phys. Rev. B,2009,79(12):5104-5109.

    [17] Tao H, Bingham C M, Strikwerda A C, et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization[J]. Phys. Rev. B,2008,78(24):1103-1106.

    [18] Avitzour Y, Urzhumov Y A, Shvets G. Wide-angle infrared absorber based on a negative-index plasmonic metamaterial[J]. Phys. Rev. B,2009,79(4):5131-5135.

    [19] Parsons A D, Pedder D J. Thin-film infrared absorber structures for advanced thermal detectors[J]. J. Vac. Sci. Technol. A,1988,6(3):1686-1689.

    [20] Mauskopf P D, Bock J J, Castillo H D, et al. Composite infrared bolometers with Si3N4 micromesh absorbers[J]. Appl. Opt.,1997,36(4):765-771.

    ZHANG Xiu-Wei, ZHANG Yan-Ning, GUO Zhe, ZHAO Jing, TONG Xiao-Min. Advances and perspective on motion detection fusion in visual and thermal framework[J]. Journal of Infrared and Millimeter Waves, 2011, 30(4): 354
    Download Citation