• Photonics Research
  • Vol. 12, Issue 1, 123 (2024)
Zhi-Dan Lei1、†, Yi-Duo Xu1、†, Cheng Lei1、3, Yan Zhao1、2、4, and Du Wang1、*
Author Affiliations
  • 1The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
  • 2College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
  • 3e-mail: leicheng@whu.edu.cn
  • 4e-mail: yan2000@whu.edu.cn
  • show less
    DOI: 10.1364/PRJ.505991 Cite this Article Set citation alerts
    Zhi-Dan Lei, Yi-Duo Xu, Cheng Lei, Yan Zhao, Du Wang. Dynamic multifunctional metasurfaces: an inverse design deep learning approach[J]. Photonics Research, 2024, 12(1): 123 Copy Citation Text show less
    References

    [1] C. L. Holloway, E. F. Kuester, J. A. Gordon. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag., 54, 10-35(2012).

    [2] T. J. Cui, S. Liu, L. Zhang. Information metamaterials and metasurfaces. J. Mater. Chem. C, 5, 3644-3668(2017).

    [3] S. Chang, X. Guo, X. Ni. Optical metasurfaces: progress and applications. Annu. Rev. Mater. Res., 48, 279-302(2018).

    [4] H. H. Hsiao, C. H. Chu, D. P. Tsai. Fundamentals and applications of metasurfaces. Small Methods, 1, 1600064(2017).

    [5] F. Zhang, M. Pu, P. Gao. Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces. Adv. Sci., 7, 1903156(2020).

    [6] F. Dong, W. Chu. Multichannel-independent information encoding with optical metasurfaces. Adv. Mater., 31, 1804921(2019).

    [7] M. Khorasaninejad, W. T. Chen, R. C. Devlin. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [8] K. H. Dou, X. Xie, M. B. Pu. Off-axis multi-wavelength dispersion controlling metalens for multi-color imaging. Opto-Electronic Adv., 3, 19000501(2020).

    [9] H. Ren, X. Fang, J. Jang. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat. Nanotechnol., 15, 948-955(2020).

    [10] H. Gao, X. Fan, W. Xiong. Recent advances in optical dynamic meta-holography. Opto-Electronic Adv., 4, 210030(2021).

    [11] G. Zheng, H. Mühlenbernd, M. Kenney. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [12] K. Chen, J. Li, G. Zhu. Phase-assisted angular-multiplexing nanoprinting based on the Jacobi-Anger expansion. Opt. Express, 30, 46552-46559(2022).

    [13] Q. Dai, G. Zhu, W. Zhang. Dual-channel anticounterfeiting color-nanoprinting with a single-size nanostructured metasurface. Opt. Express, 30, 33574-33587(2022).

    [14] R. Fu, K. Chen, Z. Li. Metasurface-based nanoprinting: principle, design and advances. Opto-Electronic Sci., 1, 220011(2022).

    [15] S. Luan, F. Peng, G. Zheng. High-speed, large-area and high-precision fabrication of aspheric micro-lens array based on 12-bit direct laser writing lithography. Light Adv. Manuf., 3, 47(2022).

    [16] G. Yoon, K. Kim, S. U. Kim. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano, 15, 698-706(2021).

    [17] G. Yoon, K. Kim, D. Huh. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat. Commun., 11, 2268(2020).

    [18] A. M. Selman, M. J. Kadhim. Fabrication of GaN nanocrystalline thin films Schottky metal-semiconductor-metal ultraviolet photodetectors. Optik, 265, 169418(2022).

    [19] Y. Liu, L. Gui, K. Xu. Enhancement of second-harmonic generation from Fano plasmonic metasurfaces by introducing structural asymmetries. Opt. Express, 30, 42440-42453(2022).

    [20] S. Zhuo, Y. Li, A. Zhao. Dynamic transmissive metasurface for broadband phase-only modulation based on phase-change materials. Laser Photonics Rev., 17, 2200403(2023).

    [21] F. Ding, Y. Yang, S. I. Bozhevolnyi. Dynamic metasurfaces using phase-change chalcogenides. Adv. Opt. Mater., 7, 1801709(2019).

    [22] S. Abdollahramezani, O. Hemmatyar, M. Taghinejad. Dynamic hybrid metasurfaces. Nano Lett., 21, 1238-1245(2021).

    [23] A. Forouzmand, H. Mosallaei. Dynamic beam control via Mie-resonance based phase-change metasurface: a theoretical investigation. Opt. Express, 26, 17948-17963(2018).

    [24] T. Tang, K. He, L. Bi. Dynamic beam scanning metasurface with high reflectivity and independent phase control based on phase change materials. Opt. Laser Technol., 156, 108543(2022).

    [25] K. Xu, X. Miao, M. Xu. The structure of phase-change chalcogenides and their high-pressure behavior. Phys. Status Solidi - RRL, 13, 1800506(2019).

    [26] M. Wuttig, N. Yamada. Phase-change materials for rewriteable data storage. Nat. Mater., 6, 824-832(2007).

    [27] X. P. Wang, X. Bin Li, N. K. Chen. Phase-change-memory process at the limit: a proposal for utilizing monolayer Sb2Te3. Adv. Sci., 8, 2004185(2021).

    [28] M. Wuttig, H. Bhaskaran, T. Taubner. Phase-change materials for non-volatile photonic applications. Nat. Photonics, 11, 465-476(2017).

    [29] S. Xiao, T. Wang, T. Liu. Active metamaterials and metadevices: a review. J. Phys. D, 53, 503002(2020).

    [30] A. Mandal, Y. Cui, L. McRae. Reconfigurable chalcogenide phase change metamaterials: a material, device, and fabrication perspective. J. Phys. Photonics, 3, 022005(2021).

    [31] T. Liu, Z. Han, J. Duan. Phase-change metasurfaces for dynamic image display and information encryption. Phys. Rev. Appl., 18, 044078(2022).

    [32] Y. Zhang, C. Fowler, J. Liang. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol., 16, 661-666(2021).

    [33] C. R. de Galarreta, A. M. Alexeev, Y. Y. Au. Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared. Adv. Funct. Mater., 28, 1704993(2018).

    [34] P. Guo, M. S. Weimer, J. D. Emery. Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching. ACS Nano, 11, 693-701(2017).

    [35] P. Li, X. Yang, T. W. W. Maß. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material. Nat. Mater., 15, 870-875(2016).

    [36] Z. Cheng, C. Ríos, N. Youngblood. Device-level photonic memories and logic applications using phase-change materials. Adv. Mater., 30, 1802435(2018).

    [37] C. Wu, H. Yu, S. Lee. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat. Commun., 12, 96(2021).

    [38] T. Tang, Y. Tang, L. Bi. Highly sensitive real-time detection of phase change process based on photonic spin Hall effect. Appl. Phys. Lett., 120, 191105(2022).

    [39] X. Luo, X. Li, M. Pu. Symmetric and asymmetric photonic spin-orbit interaction in metasurfaces. Prog. Quantum Electron., 79, 100344(2021).

    [40] L. Kang, R. P. Jenkins, D. H. Werner. Recent progress in active optical metasurfaces. Adv. Opt. Mater., 7, 1801813(2019).

    [41] K. Guo, X. Li, H. Ai. Tunable oriented mid-infrared wave based on metasurface with phase change material of GST. Results Phys., 34, 105269(2022).

    [42] S. C. Tiwari, R. K. Kalia, A. Nakano. Photoexcitation induced ultrafast nonthermal amorphization in Sb2Te3. J. Phys. Chem. Lett., 11, 10242-10249(2020).

    [43] L. Li, H. Ruan, C. Liu. Machine-learning reprogrammable metasurface imager. Nat. Commun., 10, 1082(2019).

    [44] L. Xu, M. Rahmani, Y. Ma. Enhanced light-matter interactions in dielectric nanostructures via machine-learning approach. Adv. Photonics, 2, 026003(2020).

    [45] M. V. Zhelyeznyakov, S. Brunton, A. Majumdar. Deep learning to accelerate scatterer-to-field mapping for inverse design of dielectric metasurfaces. ACS Photonics, 8, 481-488(2021).

    [46] Q. Wei, L. Huang, R. Zhao. Rotational multiplexing method based on cascaded metasurface holography. Adv. Opt. Mater., 10, 2102166(2022).

    [47] H. Ma, N. Dalloz, A. Habrard. Predicting laser-induced colors of random plasmonic metasurfaces and optimizing image multiplexing using deep learning. ACS Nano, 16, 9410-9419(2022).

    [48] Z. Lei, D. Yang, Y. Xu. Achieving ultra-high-density two-dimensional optical storage through angle resolved LSPR arrays: a case study of square array. Opt. Commun., 546, 129798(2023).

    [49] L. Song, D. Yang, Z. Lei. A reflectivity enhanced 3D optical storage nanostructure. Materials, 16, 2668(2023).

    [50] D. Yang, Z. Lei, L. Li. High optical storage density using three-dimensional hybrid nanostructures based on machine learning. Opt. Lasers Eng., 161, 107347(2023).

    [51] A. Jameson, L. Martinelli, N. A. Pierce. Optimum aerodynamic design using the Navier-Stokes equations. Theor. Comput. Fluid Dyn., 10, 213-237(1998).

    [52] G. Wu, L. Si, H. Xu. Phase-to-pattern inverse design for a fast realization of a functional metasurface by combining a deep neural network and a genetic algorithm. Opt. Express, 30, 45612-45623(2022).

    [53] Y. Teng, C. Li, S. Li. Efficient design method for terahertz broadband metasurface patterns via deep learning. Opt. Laser Technol., 160, 109058(2023).

    [54] W. Ji, J. Chang, H. X. Xu. Recent advances in metasurface design and quantum optics applications with machine learning, physics-informed neural networks, and topology optimization methods. Light Sci. Appl., 12, 169(2023).

    [55] S. An, C. Fowler, B. Zheng. A deep learning approach for objective-driven all-dielectric metasurface design. ACS Photonics, 6, 3196-3207(2019).

    [56] J. He, Z. Guo, Y. Zhang. Physics-model-based neural networks for inverse design of binary phase planar diffractive lenses. Opt. Lett., 48, 1474-1477(2023).

    [57] Y. Zhu, Y. Chen, L. Dal Negro. Design of ultracompact broadband focusing spectrometers based on diffractive optical networks. Opt. Lett., 47, 6309-6312(2022).

    [58] A. Mandal, Y. Cui, L. Mcrae. Reconfigurable chalcogenide phase change metamaterials : a material, device, and fabrication perspective. J. Phys. Photonics, 3, 022005(2021).

    [59] J. Li, S. Kamin, G. Zheng. Addressable metasurfaces for dynamic holography and optical information encryption. Sci. Adv., 4, eaar6768(2018).

    [60] B. Dong, R. Zhao, Q. Wei. Terahertz switchable VO2-Au hybrid active metasurface holographic encryption. Opt. Express, 30, 20750-20761(2022).

    [61] S. Jia, J. Liu, A. U. R. Khalid. Composite nanostructured design for dynamic control of metasurface holograms. J. Opt. Soc. Am. B, 37, 658-664(2020).

    [62] B. Liu, W. Zhao, Y. Jiang. Apparent negative reflection with the gradient acoustic metasurface by integrating supercell periodicity into the generalized law of reflection. Sci. Rep., 6, 38314(2016).

    [63] J. H. Song, J. van de Groep, S. J. Kim. Non-local metasurfaces for spectrally decoupled wavefront manipulation and eye tracking. Nat. Nanotechnol., 16, 1224-1230(2021).

    [64] C. Wang, H. X. Xu, Y. Wang. Reconfigurable transmissive metasurface synergizing dynamic and geometric phase for versatile polarization and wavefront manipulations. Mater. Des., 225, 111445(2023).

    [65] C. Qu, S. Ma, J. Hao. Tailor the functionalities of metasurfaces based on a complete phase diagram. Phys. Rev. Lett., 115, 235503(2015).

    [66] E. D. Palik. Handbook of Optical Constants of Solids(2012).

    [67] P. B. Johnson, R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 6, 4370-4379(1972).

    [68] W. Ma, Y. Xu, B. Xiong. Pushing the limits of functionality-multiplexing capability in metasurface design based on statistical machine learning. Adv. Mater., 34, 2110022(2022).

    [69] W. Ma, F. Cheng, Y. Xu. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy. Adv. Mater., 31, 1901111(2019).

    [70] J. Y. Yoo, S. Y. Kang, J. S. Park. Deep learning for anatomical interpretation of video bronchoscopy images. Sci. Rep., 11, 23765(2021).

    [71] X. Chen, W. Guo, L. Zhao. Acute myocardial infarction detection using deep learning-enabled electrocardiograms. Front. Cardiovasc. Med., 8, 654515(2021).

    [72] H. Yu, T. Huang, B. Feng. Deep-learning model for predicting the survival of rectal adenocarcinoma patients based on a surveillance, epidemiology, and end results analysis. BMC Cancer, 22, 210(2022).

    [73] Y. Zhang, C. Wang, X. Liu. Bi-channel compressive hyperspectral imager based on polarization conversion metasurface. Opt. Commun., 549, 129942(2023).

    [74] Q. Song, X. Liu, C. W. Qiu. Vectorial metasurface holography. Appl. Phys. Rev., 9, 011311(2022).

    [75] Q. Song, A. Baroni, R. Sawant. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces. Nat. Commun., 11, 2651(2020).

    [76] F. Ding, B. Chang, Q. Wei. Versatile polarization generation and manipulation using dielectric metasurfaces. Laser Photonics Rev., 14, 2000116(2020).

    [77] H. Gao, Y. Wang, X. Fan. Dynamic 3D meta-holography in visible range with large frame number and high frame rate. Sci. Adv., 6, eaba8595(2020).

    Zhi-Dan Lei, Yi-Duo Xu, Cheng Lei, Yan Zhao, Du Wang. Dynamic multifunctional metasurfaces: an inverse design deep learning approach[J]. Photonics Research, 2024, 12(1): 123
    Download Citation