• Journal of Innovative Optical Health Sciences
  • Vol. 13, Issue 5, 2030010 (2020)
Pengkun Yin1, Qingyu Lin1, and Yixiang Duan1、2
Author Affiliations
  • 1Research Center of Analytical Instrumentation Key Laboratory of Bio-resource and Eco-environment Ministry of Education, Sichuan University 610064 Chengdu, P. R. China
  • 2College of Life Sciences
  • show less
    DOI: 10.1142/s1793545820300104 Cite this Article
    Pengkun Yin, Qingyu Lin, Yixiang Duan. Applications of Raman spectroscopy in two-dimensional materials[J]. Journal of Innovative Optical Health Sciences, 2020, 13(5): 2030010 Copy Citation Text show less
    References

    [1] G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, "Recent advances in two-dimensional materials beyond graphene," ACS Nano. 9, 11509– 11539 (2015).

    [2] Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, "Ultrathin 2D nonlayered tellurium nanosheets: Facile liquidphase exfoliation, characterization, and photoresponse with high performance and enhanced stability," Adv. Funct. Mater. 28, 1705833 (2018).

    [3] M. Xu, T. Liang, M. Shi, H. Chen, "Graphene-like two-dimensional materials," Chem. Rev. 113, 3766–3798 (2013).

    [4] S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, "Progress, challenges, and opportunities in two-dimensional materials beyond graphene," ACS Nano. 7, 2898–2926 (2013).

    [5] M. Donarelli, L. Ottaviano, "2D materials for gas sensing applications: A review on graphene oxide, MoS2, WS2 and phosphorene," Sensors 18, 3638 (2018).

    [6] X. Zhang, L. Hou, A. Ciesielski, P. Samorì, "2D materials beyond graphene for high-performance energy storage applications," Adv. Energy Mater. 6, 1600671 (2016).

    [7] Z. Lin, A. McCreary, N. Briggs, S. Subramanian, K. Zhang, Y. Sun, X. Li, N. J. Borys, H. Yuan, S. K. Fullerton-Shirey, "2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications," 2D Materials. 3, 042001 (2016).

    [8] J. Wu, M. Lin, X. Cong, H. Liu, P. Tan, "Raman spectroscopy of graphene-based materials and its applications in related devices," Chem. Soc. Rev. 47, 1822–1873 (2018).

    [9] S. S. Varghese, S. H. Varghese, S. Swaminathan, K. K. Singh, V. Mittal, "Two-dimensional materials for sensing: graphene and beyond," Electronics. 4, 651–687 (2015).

    [10] J. Hong, C. Jin, J. Yuan, Z. Zhang, "Atomic defects in two-dimensional materials: From singleatom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis," Adv. Mater. 29, 1606434 (2017).

    [11] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, A. Kis, "2D transition metal dichalcogenides," Nat. Rev, Mater. 2, 17033 (2017).

    [12] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, "Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2," Adv. Mater. 23, 4248–4253 (2011).

    [13] Z. Xie, S. Chen, Y. Duo, Y. Zhu, T. Fan, Q. Zou, M. Qu, Z. Lin, J. Zhao, Y. Li, "Biocompatible twodimensional titanium nanosheets for multimodal imaging-guided cancer theranostics," ACS Appl. Mater. Interf. 11, 22129–22140 (2019).

    [14] C. Xing, W. Huang, Z. Xie, J. Zhao, D. Ma, T. Fan, W. Liang, Y. Ge, B. Dong, J. Li, "Ultrasmall bismuth quantum dots: Facile liquid-phase exfoliation, characterization, and application in high-performance UV–Vis photodetector," ACS Photon. 5, 621–629 (2018).

    [15] T. Fan, Y. Zhou, M. Qiu, H. Zhang, "Black phosphorus: A novel nanoplatform with potential in the field of bio-photonic nanomedicine," J. Innov. Opt. Heal. Sci. 11, 1830003 (2018).

    [16] M. Paillet, R. Parret, J. L. Sauvajol, P. Colomban, "Graphene and related 2D materials: An overview of the Raman studies," J. Raman Spectrosc. 49, 8– 12 (2018).

    [17] J. Lee, M. Kim, H. Cheong, "Raman spectroscopic studies on two-dimensional materials," Applied Microscopy. 45, 126–130 (2015).

    [18] M. Dresselhaus, A. Jorio, R. Saito, "Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy," Annu. Rev. Condens. Matter Phys. 1, 89–108 (2010).

    [19] X. Zhang, Q. Tan, J. Wu, W. Shi, P. Tan, "Review on the Raman spectroscopy of different types of layered materials," Nanoscale. 8, 6435–6450 (2016).

    [20] F. Liang, H. Xu, X. Wu, C. Wang, C. Luo, J. Zhang, "Raman spectroscopy characterization of two-dimensional materials," Chin. Phys. B. 27, 037802 (2018).

    [21] F. Shao, R. Zenobi, "Tip-enhanced Raman spectroscopy: principles, practice, and applications to nanospectroscopic imaging of 2D materials," Anal. Bioanal. Chem. 411, 37–61 (2019).

    [22] I. Stenger, L. Schue, M. Boukhicha, B. Berini, B. Pla?ais, A. Loiseau, J. Barjon, "Low frequency Raman spectroscopy of few-atomic-layer thick hBN crystals," 2D Mater. 4, 031003 (2017).

    [23] Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C. K. Koo, Z. Shen, J. T. Thong, "Probing layer number and stacking order of few-layer graphene by Raman spectroscopy," Small, 6, 195–200 (2010).

    [24] J. Hwang, Y. Lin, J. Hwang, R. Chang, S. Chattopadhyay, C. Chen, P. Chen, H. Chiang, T. Tsai, L. Chen, "Imaging layer number and stacking order through formulating Raman fingerprints obtained from hexagonal single crystals of few layer graphene," Nanotechnology, 24, 015702 (2012).

    [25] Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, Z. X. Shen, "Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening," ACS Nano. 2, 2301–2305 (2008).

    [26] L. Malard, J. Nilsson, D. Elias, J. Brant, F. Plentz, E. Alves, A. C. Neto, M. Pimenta, "Probing the electronic structure of bilayer graphene by Raman scattering," Phys. Rev. B. 76, 201401 (2007).

    [27] T. Mohiuddin, A. Lombardo, R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. Basko, C. Galiotis, N. Marzari, "Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation," Phys. Rev. B. 79, 205433 (2009).

    [28] J. Zabel, R. R. Nair, A. Ott, T. Georgiou, A. K. Geim, K. S. Novoselov, C. Casiraghi, "Raman spectroscopy of graphene and bilayer under biaxial strain: Bubbles and balloons," Nano Lett. 12, 617– 621 (2012).

    [29] T. Yu, Z. Ni, C. Du, Y. You, Y. Wang, Z. Shen, "Raman mapping investigation of graphene on transparent flexible substrate: The strain effect," J. Phys. Chem. C. 112, 12602–12605 (2008).

    [30] A. C. Ferrari, "Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects," Solid State Commun. 143, 47–57 (2007).

    [31] D. Basko, S. Piscanec, A. Ferrari, "Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene," Phys. Rev. B. 80, 165413 (2009).

    [32] J. Yan, Y. Zhang, P. Kim, A. Pinczuk, "Electric field effect tuning of electron-phonon coupling in graphene," Phys. Rev. Lett. 98, 166802 (2007).

    [33] J. Wu, H. Wang, X. Li, H. Peng, P. Tan, "Raman spectroscopic characterization of stacking configuration and interlayer coupling of twisted multilayer graphene grown by chemical vapor deposition," Carbon, 110, 225–231 (2016).

    [34] C. V. Raman, K. S. Krishnan, "A new type of secondary radiation," Nature, 121, 501–502 (1928).

    [35] R. L. McCreery, Raman Spectroscopy for Chemical Analysis, Vol. 225, John Wiley & Sons (2005).

    [36] D. W. Shipp, F. Sinjab, I. Notingher, "Raman spectroscopy: Techniques and applications in the life sciences," Adv. Opt. Photon. 9, 315–428 (2017).

    [37] X. Zhu, T. Xu, Q. Lin, Y. Duan, "Technical development of Raman spectroscopy: From instrumental to advanced combined technologies," Appli. Spectroscopy Rev. 49, 64–82 (2014).

    [38] M. Qiu, S. Long, B. Li, L. Yan, W. Xie, Y. Niu, X. Wang, Q. Guo, A. Xia, "Toward an understanding of how the optical property of water-soluble cationic polythiophene derivative is altered by the addition of salts: The Hofmeister effect," J. Phys. Chem. C. 117, 21870–21878 (2013).

    [39] R. Panneerselvam, G.-K. Liu, Y.-H. Wang, J.-Y. Liu, S.-Y. Ding, J.-F. Li, D.-Y. Wu, Z.-Q. Tian, "Surface-enhanced Raman spectroscopy: Bottlenecks and future directions," Chem. Commun. 54, 10–25 (2018).

    [40] Y. Stubrov, A. Nikolenko, V. Strelchuk, S. Nedilko, V. Chornii, "Structural modification of single-layer graphene under laser irradiation featured by micro- Raman spectroscopy," Nanoscale Res. Lett. 12, 1–6 (2017).

    [41] C. Xie, Y.-Q. Li, "Confocal micro-Raman spectroscopy of single biological cells using optical trapping and shifted excitation difference techniques," J. Appl. Phys. 93, 2982–2986 (2003).

    [42] W. Liao, Q. Lin, S. Xie, Y. He, Y. Tian, Y. Duan, "A novel strategy for rapid detection of bacteria in water by the combination of three-dimensional surface-enhanced Raman scattering (3D SERS) and laser induced breakdown spectroscopy (LIBS)," Anal. Chim. Acta. 1043, 64–71 (2018).

    [43] M. Fleischmann, P. Hendra, A. McQuillan, "Raman spectra of pyridine adsorbed at a silver elec," Chem. Phys. Lett. 26, 163–166 (1974).

    [44] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667 (1997).

    [45] J. Langer, D. Jimenez de Aberasturi, J. Aizpurua, R. A. Alvarez-Puebla, B. Auguie, J. J. Baumberg, G. C. Bazan, S. E. Bell, A. Boisen, A. G. Brolo, "Present and future of surface-enhanced Raman scattering," ACS Nano. 14, 28–117 (2019).

    [46] P. L. Stiles, J. A. Dieringer, N. C. Shah, R. P. Van Duyne, "Surface-enhanced Raman spectroscopy," Annu. Rev. Anal. Chem. 1, 601–626 (2008).

    [47] S. Kawata, Y. Inouye, P. Verma, "Plasmonics for near-field nano-imaging and superlensing," Nat. Photon. 3, 388 (2009).

    [48] S. Tian, Q. Zhou, C. Li, Z. Gu, J. R. Lombardi, J. Zheng, "Exploring the chemical enhancement of surface-enhanced raman scattering with a designed silver/Silica cavity substrate," J. Phys. Chem. C. 117, 556–563 (2013).

    [49] M. Osawa, N. Matsuda, K. Yoshii, I. Uchida, "Charge transfer resonance Raman process in surface- enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution," J. Phys. Chem. 98, 12702–12707 (1994).

    [50] D. Cialla-May, X.-S. Zheng, K. Weber, J. Popp, "Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: From cells to clinics," Chem. Soc. Rev. 46, 3945–3961 (2017).

    [51] Z. Tian, B. Ren, D. Wu, "Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures," J. Phys. Chem. B 106, 9463–9483 (2002).

    [52] R. Panneerselvam, G. Liu, Y. Wang, J. Liu, S. Ding, J. Li, D. Wu, Z. Tian, "Surface-enhanced Raman spectroscopy: bottlenecks and future directions," Chem. Commun. 54, 10–25 (2018).

    [53] B. Pettinger, Tip-enhanced Raman spectroscopy (TERS). Surface-Enhanced Raman Scattering, Vol. 103, pp. 217–240, Springer (2006).

    [54] H. Zhang, C. Wang, H. Sun, G. Fu, S. Chen, Y. Zhang, B. Chen, J. R. Anema, Z. Yang, J. Li, "In situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy," Nat. Commun. 8, 1– 8 (2017).

    [55] B. Ren, X. Lin, Z. Yang, G. Liu, R. F. Aroca, B. Mao, Z. Tian, "Surface-enhanced Raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes," J. Am. Chem. Soc. 125, 9598–9599 (2003).

    [56] B. Moll, T. Tichelkamp, S. Wegner, B. Francis, T. J. Müller, C. Janiak, "Near-infrared (NIR) surfaceenhanced Raman spectroscopy (SERS) study of novel functional phenothiazines for potential use in dye sensitized solar cells (DSSC)," RSC Adv. 9, 37365–37375 (2019).

    [57] R. M. St€ockle, Y. D. Suh, V. Deckert, R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman spectroscopy," Chem. Phys. Lett. 318, 131–136 (2000).

    [58] L. Yang, T. Huang, Z. Zeng, M. Li, X. Wang, F. Yang, B. Ren, "Rational fabrication of a goldcoated AFM TERS tip by pulsed electrodeposition," Nanoscale, 7, 18225–18231 (2015).

    [59] T. Huang, C. Li, L. Yang, J. Zhu, X. Yao, C. Liu, K. Lin, Z. Zeng, S. Wu, X. Wang, "Rational fabrication of silver-coated AFM TERS tips with a high enhancement and long lifetime," Nanoscale, 10, 4398–4405 (2018).

    [60] P. Verma, "Tip-enhanced Raman spectroscopy: Technique and recent advances," Chem. Rev. 117, 6447–6466 (2017).

    [61] J. Steidtner, B. Pettinger, "Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution," Phys. Rev. Lett. 100, 236101 (2008).

    [62] R. Zhang, Y. Zhang, Z. Dong, S. Jiang, C. Zhang, L. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. E. Luo, "Chemical mapping of a single molecule by plasmon- enhanced Raman scattering," Nature. 498, 82–86 (2013).

    [63] C. Chen, N. Hayazawa, S. Kawata, "A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient," Nat. Commun. 5, 1–5 (2014).

    [64] T. Yano, P. Verma, Y. Saito, T. Ichimura, S. Kawata, "Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres," Nat. Photon. 3, 473–477 (2009).

    [65] J. Lee, K. T. Crampton, N. Tallarida, V. A. Apkarian, "Visualizing vibrational normal modes of a single molecule with atomically confined light," Nature 568, 78–82 (2019).

    [66] D. Kurouski, "Advances of tip-enhanced Raman spectroscopy (TERS) in electrochemistry, biochemistry, and surface science," Vib. Spectrosc. 91, 3–15 (2017).

    [67] S. Zaleski, A. J. Wilson, M. Mattei, X. Chen, G. Goubert, M. F. Cardinal, K. A. Willets, R. P. Van Duyne, "Investigating nanoscale electrochemistry with surface-and tip-enhanced Raman spectroscopy," Acc. Chem. Res. 49, 2023–2030 (2016).

    [68] D. Cialla, T. Deckert-Gaudig, C. Budich, M. Laue, R. M€oller, D. Naumann, V. Deckert, J. Popp, "Raman to the limit: Tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus," J. Raman Spectrosc. 40, 240–243 (2009).

    [69] B. Pettinger, B. Ren, G. Picardi, R. Schuster, G. Ertl, "Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy," Phys. Rev. Lett. 92, 096101 (2004).

    [70] T. Yano, T. Ichimura, S. Kuwahara, F. H'Dhili, K. Uetsuki, Y. Okuno, P. Verma, S. Kawata, "Tipenhanced nano-Raman analytical imaging of locally induced strain distribution in carbon nanotubes," Nat. Commun. 4, 1–7 (2013).

    [71] S. Sheng, J. Wu, X. Cong, W. Li, J. Gou, Q. Zhong, P. Cheng, P.-H. Tan, L. Chen, K. Wu, "Vibrational properties of a monolayer silicene sheet studied by tip-enhanced Raman spectroscopy," Phys. Rev. Lett. 119, 196803 (2017).

    [72] G. Puppels, F. De Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. Arndt-Jovin, T. Jovin, "Studying single living cells and chromosomes by confocal Raman microspectroscopy," Nature, 347, 301–303 (1990).

    [73] I. De Wolf, "Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits," Semicond. Sci. Technol. 11, 139 (1996).

    [74] J. Sacristan, C. Mijangos, H. Reinecke, S. Spells, J. Yarwood, "Selective surface modification of PVC films as revealed by confocal Raman microspectroscopy," Macromolecules, 33, 6134–6139 (2000).

    [75] C. Amatore, F. Bonhomme, J. Bruneel, L. Servant, L. Thouin, "Mapping dynamic concentration pro- files with micrometric resolution near an active microscopic surface by confocal resonance Raman microscopy. Application to diffusion near ultramicroelectrodes: First direct evidence for a conproportionation reaction," J. Electroanal. Chem. 484, 1–17 (2000).

    [76] Z. Luo, H. Liu, B. T. Spann, Y. Feng, P. Ye, Y. P. Chen, X. Xu, "Measurement of in-plane thermal conductivity of ultrathin films using micro-Raman spectroscopy," Nanoscale Microscale Thermophys. Eng. 18, 183–193 (2014).

    [77] J. Lee, D. Yoon, H. Kim, S. W. Lee, H. Cheong, "Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy," Phys. Rev. B. 83, 081419 (2011).

    [78] W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, R. S. Ruoff, "Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition," Nano Lett. 10, 1645– 1651 (2010).

    [79] K. Shahil, M. Hossain, V. Goyal, A. Balandin, "Micro-Raman spectroscopy of mechanically exfoliated few-quintuple layers of Bi2Te3, Bi2 Se3, and Sb2Te3 materials," J. Appl. Phys. 111, 054305 (2012).

    [80] O. Lourie, H. Wagner, "Evaluation of Young's modulus of carbon nanotubes by micro-Raman spectroscopy," J. Mater. Res. 13, 2418–2422 (1998).

    [81] D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice Jr, "Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro- Raman spectroscopy," Carbon. 47, 145–152 (2009).

    [82] F. Wang, X. Zhou, J. Zhou, T. Sham, Z. Ding, "Observation of single tin dioxide nanoribbons by confocal Raman microspectroscopy," J. Phys. Chem. C. 111, 18839–18843 (2007).

    [83] S. Yabumoto, H. Hamaguchi, "Tilted two-dimensional array multifocus confocal Raman microspectroscopy," Anal. Chem. 89, 7291–7296 (2017).

    [84] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, 306, 666–669 (2004).

    [85] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, A. K. Geim, "Fine structure constant defines visual transparency of graphene," Science, 320, 1308 (2008).

    [86] C. Lee, X. Wei, J. W. Kysar, J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, 321, 385–388 (2008).

    [87] J. Lee, D. Yoon, H. Cheong, "Estimation of Young's modulus of graphene by Raman spectroscopy," Nano Lett. 12, 4444–4448 (2012).

    [88] G. Gebreegziabher, A. Asemahegne, D. Ayele, M. Dhakshnamoorthy, A. Kumar, "One-step synthesis and characterization of reduced graphene oxide using chemical exfoliation method," Mater. Today Chem. 12, 233–239 (2019).

    [89] C. Lin, W. Liu, "Synthesis and characterizations of graphene-based composite film for thermal dissipation," J. Alloys Compd. 790, 156–162 (2019).

    [90] O. A. Alawi, N. A. C. Sidik, S. Kazi, G. Najafi, "Graphene nanoplatelets and few-layer graphene studies in thermo-physical properties and particle characterization," J. Thermal Anal. Calorimetry. 135, 1081–1093 (2019).

    [91] V. Priyanka, G. Savithiri, R. Subadevi, V. Suryanarayanan, M. Sivakumar, "Physicochemical exfoliation of graphene sheets using graphitic carbon nitride," New J. Chem. 43, 16200–16206 (2019).

    [92] I. Childres, L. A. Jauregui, W. Park, H. Cao, Y. P. Chen, "Raman spectroscopy of graphene and related materials," New Develop. Photon Mater. Res. 1, 1–20 (2013).

    [93] L. Malard, M. Pimenta, G. Dresselhaus, M. Dresselhaus, "Raman spectroscopy in graphene," Phys. Rep. 473, 51–87 (2009).

    [94] B. Li, L. Zhou, D. Wu, H. Peng, K. Yan, Y. Zhou, Z. Liu, "Photochemical chlorination of graphene," ACS Nano. 5, 5957–5961 (2011).

    [95] M. Huang, H. Yan, T. F. Heinz, J. Hone, "Probing strain-induced electronic structure change in graphene by Raman spectroscopy," Nano Lett. 10, 4074–4079 (2010).

    [96] A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S. Novoselov, C. Casiraghi, "Probing the nature of defects in graphene by Raman spectroscopy," Nano Lett. 12, 3925–3930 (2012).

    [97] M. Bayle, N. Reckinger, A. Felten, P. Landois, O. Lancry, B. Dutertre, J. Colomer, A. Zahab, L. Henrard, J. Sauvajol, "Determining the number of layers in few-layer graphene by combining Raman spectroscopy and optical contrast," J. Raman Spectrosc. 49, 36–45 (2018).

    [98] D. L. Silva, J. L. E. Campos, T. F. Fernandes, J. N. Rocha, L. R. Machado, E. M. Soares, D. R. Miquita, H. Miranda, C. Rabelo, O. P. V. Neto, "Raman spectroscopy analysis of number of layers in mass-produced graphene flakes," Carbon. 161, 181–189 (2020).

    [99] V.-T. Nguyen, B. K. Min, Y. Yi, S. J. Kim, C.-G. Choi, "MXene (Ti3C2TX)/graphene/PDMS composites for multifunctional broadband electromagnetic interference shielding skins," Chem. Eng. J. 393, 124608 (2020).

    [100] S. Roscher, R. Ho?mann, O. Ambacher, "Determination of the graphene–graphite ratio of graphene powder by Raman 2D band symmetry analysis," Anal. Meth. 11, 1224–1228 (2019).

    [101] N. S. Mueller, S. Heeg, M. P. Alvarez, P. Kusch, S. Wasserroth, N. Clark, F. Schedin, J. Parthenios, K. Papagelis, C. Galiotis, "Evaluating arbitrary strain configurations and doping in graphene with Raman spectroscopy," 2D Mater. 5, 015016 (2017).

    [102] K. Sampathkumar, V. Diez Cabanes, P. Kovaricek, E. del Corro, M. Bou?a, J. Ho?ek, M. Kalbac, O. Frank, "On the suitability of raman spectroscopy to monitor the degree of graphene functionalization by diazonium salts," J. Phys. Chem. C. 123, 22397–22402 (2019).

    [103] L. A. Belyaeva, L. Jiang, A. Soleimani, J. Methorst, H. J. Risselada, G. F. Schneider, "Liquids relax and unify strain in graphene," Nat. Commun. 11, 1–11 (2020).

    [104] J. Judek, I. Pasternak, P. Dabrowski, W. Strupinski, M. Zdrojek, "Hydrogen intercalation of CVD graphene on germanium (001)–Strain and doping analysis using Raman spectroscopy," Appl. Surf. Sci. 473, 203–208 (2019).

    [105] J. Zhang, R. Zhou, H. Minamimoto, K. Murakoshi, "Plasmon-induced metal restructuring and graphene oxidation monitored by surface-enhanced Raman spectroscopy," Appl. Mater. Today. 15, 372–376 (2019).

    [106] L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, D. Fan, "Sensitivity enhancement by using fewlayer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor," Sens. Actuators B. Chem. 249, 542–548 (2017).

    [107] C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, H. Zhang, "2D nonlayered selenium nanosheets: Facile synthesis, photoluminescence, and ultrafast photonics," Advanced Opt. Mater. 5, 1700884 (2017).

    [108] Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, H. Zhang, "Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide," Photon. Res. 7, 494–502 (2019).

    [109] W. Huang, Z. Xie, T. Fan, J. Li, Y. Wang, L. Wu, D. Ma, Z. Li, Y. Ge, Z. N. Huang, "Black-phosphorus- analogue tin monosulfide: An emerging optoelectronic two-dimensional material for highperformance photodetection with improved stability under ambient/harsh conditions," J. Mater. Chem. C. 6, 9582–9593 (2018).

    [110] Z. Xie, D. Wang, T. Fan, C. Xing, Z. Li, W. Tao, L. Liu, S. Bao, D. Fan, H. Zhang, "Black phosphorus analogue tin sulfide nanosheets: Synthesis and application as near-infrared photothermal agents and drug delivery platforms for cancer therapy," J. Mater. Chem. B. 6, 4747–4755 (2018).

    [111] H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, F. Peeters, "Anomalous Raman spectra and thickness-dependent electronic properties of WSe 2," Phys. Rev. B. 87, 165409 (2013).

    [112] R. Saito, Y. Tatsumi, S. Huang, X. Ling, M. Dresselhaus, "Raman spectroscopy of transition metal dichalcogenides," J. Phys. Condens. Matter. 28, 353002 (2016).

    [113] E. Lorchat, G. Froehlicher, S. Berciaud, "Splitting of interlayer shear modes and photon energy dependent anisotropic Raman response in N-layer ReSe2 and ReS2," ACS Nano. 10, 2752–2760 (2016).

    [114] V. Vandalon, A. Sharma, A. Perrotta, B. Schrode, M. A. Verheijen, A. A. Bol, "Polarized Raman spectroscopy to elucidate the texture of synthesized MoS2," Nanoscale, 11, 22860–22870 (2019).

    [115] G. Froehlicher, E. Lorchat, O. Zill, M. Romeo, S. Berciaud, "Rigid-layer Raman-active modes in Nlayer transition metal dichalcogenides: Interlayer force constants and hyperspectral Raman imaging," J. Raman Spectrosc. 49, 91–99 (2018).

    [116] Y. Wang, C. Cong, C. Qiu, T. Yu, "Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain," small, 9, 2857–2861 (2013).

    [117] D. A. Chenet, O. B. Aslan, P. Y. Huang, C. Fan, A. M. van der Zande, T. F. Heinz, J. C. Hone, "Inplane anisotropy in mono-and few-layer ReS2 probed by Raman spectroscopy and scanning transmission electron microscopy," Nano Lett. 15, 5667–5672 (2015).

    [118] M. Hafeez, L. Gan, H. Li, Y. Ma, T. Zhai, "Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic raman property and optoelectronic application," Adv. Mater. 28, 8296–8301 (2016).

    [119] H. Kim, H. Ko, S. M. Kim, H. Rho, "Polarizationdependent anisotropic Raman response of CVDgrown vertically stacked MoS2 layers," J. Raman Spectrosc. 51, 774–780 (2020).

    [120] X. Wang, K. Du, Y. Y. F. Liu, P. Hu, J. Zhang, Q. Zhang, M. H. S. Owen, X. Lu, C. K. Gan, P. Sengupta, "Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3 T crystals," 2D Mater. 3, 031009 (2016).

    [121] Y. Feng, W. Zhou, Y. Wang, J. Zhou, E. Liu, Y. Fu, Z. Ni, X. Wu, H. Yuan, F. Miao, "Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry," Phys. Rev. B. 92, 054110 (2015).

    [122] O. B. Aslan, D. A. Chenet, A. M. Van Der Zande, J. C. Hone, T. F. Heinz, "Linearly polarized excitons in single- and few-layer ReS2 crystals," Acs Photon. 3, 96–101 (2016).

    [123] H. J. Conley, B. Wang, J. I. Ziegler, R. F. HaglundJr, S. T. Pantelides, K. I. Bolotin, "Bandgap engineering of strained monolayer and bilayer MoS2," Nano Lett. 13, 3626–3630 (2013).

    [124] T. Verhagen, V. L. Guerra, G. Haider, M. Kalbac, J. Vejpravova, "Towards the evaluation of defects in MoS2 using cryogenic photoluminescence spectroscopy," Nanoscale, 12, 3019–3028 (2020).

    [125] A. S. Pawbake, A. Date, S. R. Jadkar, D. J. Late, "Temperature dependent raman spectroscopy and sensing behavior of few layer SnSe2nanosheets," Chem. Select. 1, 5380–5387 (2016).

    [126] X. Zhou, J. Li, Y. Leng, X. Cong, D. Liu, J. Luo, "Exploring interlayer interaction of SnSe2 by lowfrequency Raman spectroscopy," Phys. E. Low Dimensional Syst. Nanostruct. 105, 7–12 (2019).

    [127] Y. Liu, Y. Zhou, H. Zhang, F. Ran, W. Zhao, L. Wang, C. Pei, J. Zhang, X. Huang, H. Li, "Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy," Front. Phys. 14, 13607 (2019).

    [128] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, Y. Zhang, "Black phosphorus field-effect transistors," Nat. Nano. 9, 372 (2014).

    [129] Y. Du, H. Liu, Y. Deng, P. D. J. A. N. Ye, "Device perspective for black phosphorus field-effect transistors: Contact resistance, ambipolar behavior, and scaling," ACS Nano. 8, 10035–10042 (2014).

    [130] A. Hirsch, F. Hauke, "Post-graphene 2D chemistry: The emerging field of molybdenum disulfide and black phosphorus functionalization," Angew. Chem. Int. Ed. 57, 4338–4354 (2018).

    [131] Q. Wu, M. Liang, S. Zhang, X. Liu, F. Wang, "Development of functional black phosphorus nanosheets with remarkable catalytic and antibacterial performance," Nanoscale, 10, 10428– 10435 (2018).

    [132] D. Warschauer, "Electrical and optical properties of crystalline black phosphorus," J. Appl. Phys. 34, 1853–1860 (1963).

    [133] Y. Takao, H. Asahina, A. Morita, "Electronic structure of black phosphorus in tight binding approach," J. Phys. Soc. Jpn. 50, 3362–3369 (1981).

    [134] H. Liu, Y. Du, Y. Deng, D. Y. Peide, "Semiconducting black phosphorus: Synthesis, transport properties and electronic applications," Chem. Soc. Rev. 44, 2732–2743 (2015).

    [135] Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. F. Yu, "From black phosphorus to phosphorene: Basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics," Adv. Funct. Mater. 25, 6996–7002 (2015).

    [136] X. Liu, C. R. Ryder, S. A. Wells, M. C. Hersam, "Resolving the in-plane anisotropic properties of black phosphorus," Small Meth. 1, 1700143 (2017).

    [137] H. B. Ribeiro, M. A. Pimenta, C. J. de Matos, "Raman spectroscopy in black phosphorus," J. Raman Spectrosc. 49, 76–90 (2018).

    [138] M. Ozhukil Valappil, S. Alwarappan, V. K. Pillai, "Electrochemical transformation of black phosphorous to phosphorene quantum dots: Effect of nitrogen doping," MRE. 7, 014005 (2020).

    [139] A. S. Pawbake, M. B. Erande, S. R. Jadkar, D. J. Late, "Temperature dependent Raman spectroscopy of electrochemically exfoliated few layer black phosphorus nanosheets," RSC Adv. 6, 76551– 76555 (2016).

    [140] T. Wang, M. Han, R. Wang, P. Yuan, S. Xu, X. Wang, "Characterization of anisotropic thermal conductivity of suspended nm-thick black phosphorus with frequency-resolved Raman spectroscopy," J. Appl. Phys. 123, 145104 (2018).

    [141] Z. Luo, J. Maassen, Y. Deng, Y. Du, R. P. Garrelts, M. S. Lundstrom, D. Y. Peide, X. Xu, "Anisotropic in-plane thermal conductivity observed in fewlayer black phosphorus," Nat. Commun. 6, 1–8 (2015).

    [142] W. Zhu, L. Liang, R. H. Roberts, J.-F. Lin, D. Akinwande, "Anisotropic electron–phonon interactions in angle-resolved Raman study of strained black phosphorus," ACS Nano. 12, 12512–12522 (2018).

    [143] J. Wu, N. Mao, L. Xie, H. Xu, J. Zhang, "Identifying the crystalline orientation of black phosphorus using angle-resolved polarized raman spectroscopy," Angew. Chem. Int. Ed. 54, 2366– 2369 (2015).

    [144] J. Zhao, J. Zhu, R. Cao, H. Wang, Z. Guo, D. K. Sang, J. Tang, D. Fan, J. Li, H. Zhang, "Liquefaction of water on the surface of anisotropic two-dimensional atomic layered black phosphorus," Nat. Commun. 10, 1–7 (2019).

    [145] A. Downes, A. Elfick, "Raman spectroscopy and related techniques in biomedicine," Sensors, 10, 1871–1889 (2010).

    [146] M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang, X. Chen, D. K. Sang, C. Xing, Z. Li, B. Dong, "Novel concept of the smart NIR-light–controlled drug release of black phosphorus nanostructure for cancer therapy," Proc. Natl. Acad. Sci. USA. 115, 501–506 (2018).

    [147] M. Qiu, W. X. Ren, T. Jeong, M. Won, G. Y. Park, D. K. Sang, L. Liu, H. Zhang, J. S. Kim, "Omnipotent phosphorene: A next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications," Chem. Soc. Rev. 47, 5588–5601 (2018).

    [148] M. Qiu, A. Singh, D. Wang, J. Qu, M. Swihart, H. Zhang, P. N. Prasad, "Biocompatible and biodegradable inorganic nanostructures for nanomedicine: Silicon and black phosphorus," Nano Today. 25, 135–155 (2019).

    [149] G. Yang, Z. Liu, Y. Li, Y. Hou, X. Fei, C. Su, S. Wang, Z. Zhuang, Z. Guo, "Facile synthesis of black phosphorus–Au nanocomposites for enhanced photothermal cancer therapy and surfaceenhanced Raman scattering analysis," Biomater. Sci. 5, 2048–2055 (2017).

    [150] M. Ghidiu, M. Naguib, C. Shi, O. Mashtalir, L. Pan, B. Zhang, J. Yang, Y. Gogotsi, S. J. Billinge, M. W. Barsoum, "Synthesis and characterization of two-dimensional Nb4C3 (MXene)," Chem. Commun. 50, 9517–9520 (2014).

    [151] B. Anasori, M. R. Lukatskaya, Y. Gogotsi, "2D metal carbides and nitrides (MXenes) for energy storage," Nat. Rev, Mater. 2, 1–17 (2017).

    [152] Y. Gogotsi, B. Anasori, "The Rise of MXenes," ACS Nano. 13, 8491–8494 (2019).

    [153] M. Khazaei, M. Arai, T. Sasaki, C. Y. Chung, N. S. Venkataramanan, M. Estili, Y. Sakka, Y. Kawazoe, "Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides," Adv. Funct. Mater. 23, 2185–2192 (2013).

    [154] B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B. C. Hosler, L. Hultman, P. R. Kent, Y. Gogotsi, M. W. Barsoum, "Two-dimensional, ordered, double transition metals carbides (MXenes)," ACS Nano. 9, 9507–9516 (2015).

    [155] W. Sun, S. Shah, Y. Chen, Z. Tan, H. Gao, T. Habib, M. Radovic, M. Green, "Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution," J. Mater. Chem. A. 5, 21663–21668 (2017).

    [156] M. Li, J. Lu, K. Luo, Y. Li, K. Chang, K. Chen, J. Zhou, J. Rosen, L. Hultman, P. Eklund, "Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes," J. Am. Chem. Soc. 141, 4730–4737 (2019).

    [157] R. Syamsai, P. Kollu, S. K. Jeong, A. N. Grace, "Synthesis and properties of 2D-titanium carbide MXene sheets towards electrochemical energy storage applications," Ceram. Int. 43, 13119– 13126 (2017).

    [158] X. Wang, T. S. Mathis, K. Li, Z. Lin, L. Vlcek, T. Torita, N. C. Osti, C. Hatter, P. Urbankowski, A. Sarycheva, "Influences from solvents on charge storage in titanium carbide MXenes," Nat. Energy, 4, 241–248 (2019).

    [159] D. Zhao, R. Zhao, S. Dong, X. Miao, Z. Zhang, C. Wang, L. Yin, "Alkali-induced 3D crinkled porous Ti3C2 MXene architectures coupled with NiCoP bimetallic phosphide nanoparticles as anodes for high-performance sodium-ion batteries," Energy Environ. Sci. Technol. 12, 2422–2432 (2019).

    [160] Q. Jiang, C. Wu, Z. Wang, A. C. Wang, J.-H. He, Z. L. Wang, H. N. Alshareef, "MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit," Nano Energy, 45, 266–272 (2018).

    [161] K. Huang, Z. Li, J. Lin, G. Han, P. Huang, "Twodimensional transition metal carbides and nitrides (MXenes) for biomedical applications," Chem. Soc. Rev. 47, 5109–5124 (2018).

    [162] S. Kumar, Y. Lei, N. H. Alshareef, M. Quevedo- Lopez, K. N. Salama, "Biofunctionalized two-dimensional Ti3C2 MXenes for ultrasensitive detection of cancer biomarker," Biosensors Bioelectron. 121, 243–249 (2018).

    [163] P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota, P. L. Walsh, M. Zhao, V. B. Shenoy, M. W. Barsoum, Y. Gogotsi, "Synthesis of two-dimensional titanium nitride Ti4N3 (MXene)," Nanoscale, 8, 11385–11391 (2016).

    [164] M. Aakyiir, H. Yu, S. Araby, W. Ruoyu, A. Michelmore, Q. Meng, D. Losic, N. R. Choudhury, J. Ma, "Electrically and thermally conductive elastomer by using MXene nanosheets with interface modification," Chem. Eng. J. 397, 125439 (2020).

    [165] R. Thakur, A. VahidMohammadi, J. Moncada, W. R. Adams, M. Chi, B. Tatarchuk, M. Beidaghi, C. A. Carrero, "Insights into the thermal and chemical stability of multilayered V2CTx MXene," Nanoscale. 11, 10716–10726 (2019).

    [166] M. Hu, Z. Li, T. Hu, S. Zhu, C. Zhang, X. Wang, "High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation," ACS Nano. 10, 11344–11350 (2016).

    [167] N. P. Pieczonka, R. F. Aroca, "Single molecule analysis by surfaced-enhanced Raman scattering," Chem. Soc. Rev. 37, 946–954 (2008).

    [168] J. Bao, M. G. Bawendi, "A colloidal quantum dot spectrometer," Nature, 523, 67–70 (2015).

    [169] A. Sakamoto, S. Ochiai, H. Higashiyama, K. Masutani, J. I. Kimura, E. Koseto-Horyu, M. Tasumi, "Raman studies of Japanese art objects by a portable Raman spectrometer using liquid crystal tunable filters," J. Raman Spectrosc. 43, 787–791 (2012).

    [170] S. A. Ghopry, M. A. Alamri, R. Goul, R. Sakidja, J. Z. Wu, "Extraordinary sensitivity of surfaceenhanced Raman spectroscopy of molecules on MoS2 (WS2 T nanodomes/graphene van der Waals heterostructure substrates," Adv. Opt. Mater. 7, 1801249 (2019).

    [171] F. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari, "Surface-enhanced Raman spectroscopy of graphene," ACS Nano. 4, 5617–5626 (2010).

    [172] R. Das, R. Soni, "Synthesis and surface-enhanced Raman scattering of indium nanotriangles and nanowires," RSC Adv. 7, 32255–32263 (2017).

    [173] M. Yu, S. Liu, D. Su, S. Jiang, G. Zhang, Y. Qin, M.-Y. Li, "Controllable MXene nano-sheet/Au nanostructure architectures for the ultra-sensitive molecule Raman detection," Nanoscale, 11, 22230–22236 (2019).

    [174] B. Soundiraraju, B. K. George, "Two-dimensional titanium nitride (Ti2N) MXene: Synthesis, characterization, and potential application as surfaceenhanced Raman scattering substrate," ACS Nano 11, 8892–8900 (2017).

    [175] M. Green, F. M. Liu, "SERS substrates fabricated by island lithography: The silver/pyridine system," J. Phys. Chem. B. 107, 13015–13021 (2003).

    [176] T. Ding, D. O. Sigle, L. O. Herrmann, D. Wolverson, J. J. Baumberg, "Nanoimprint lithography of Al nanovoids for deep-UV SERS," ACS Appl. Mater. Interf. 6, 17358–17363 (2014).

    [177] L. Zhang, "Self-assembly Ag nanoparticle monolayer film as SERS substrate for pesticide detection," Appl. Surf. Sci. 270, 292–294 (2013).

    [178] M. Fan, A. G. Brolo, "Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit," PCCP. 11, 7381–7389 (2009).

    [179] S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, Z.-Q. Tian, "Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials," Nat. Rev. Mater. 1, 1–16 (2016).

    [180] H. Zhang, C. Wang, H.-L. Sun, G. Fu, S. Chen, Y.-J. Zhang, B.-H. Chen, J. R. Anema, Z.-L. Yang, J.-F. Li, "In situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy," Nat. Commun. 8, 1–8 (2017).

    Pengkun Yin, Qingyu Lin, Yixiang Duan. Applications of Raman spectroscopy in two-dimensional materials[J]. Journal of Innovative Optical Health Sciences, 2020, 13(5): 2030010
    Download Citation