• Infrared Technology
  • Vol. 43, Issue 1, 79 (2021)
Shaoqi SHAN1, Jinmin WU2, Yaxin WEN1, Biansheng LI1、*, Xiaoxue GUO2, Yuming LI2, Zheng RUAN1, Dandan LI1, and Zidong WU3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article
    SHAN Shaoqi, WU Jinmin, WEN Yaxin, LI Biansheng, GUO Xiaoxue, LI Yuming, RUAN Zheng, LI Dandan, WU Zidong. Irradiation Characteristics of Point-shaped Far-Infrared Emission Source and Combination[J]. Infrared Technology, 2021, 43(1): 79 Copy Citation Text show less

    Abstract

    In this study, the far-infrared radiation characteristics of three materials and the effects of different metals on far-infrared radiation were explored. The study used the point-shaped far-infrared emission source as a research object to examine the different influencing factors and power density distribution regulation of the point-shaped far-infrared source. Results indicated that the far-infrared sintered material exhibited the highest power density, followed by the ceramic and glass materials. Factors that affected the power density of far-infrared materials were identified as the quality, irradiated area, and metal cover. The power density of the point-shaped far-infrared source increased with temperature, and the wavelength corresponding to the maximum power density was approximately λ=6-10 μm. The power density of the point-shaped far-infrared emission source was distributed in a radial manner. In the range of the vertical distance L=0-3 cm and radius r=0-1 cm, the far-infrared power density attenuation rate was low and was designed accordingly. In addition, a mathematical model of power density E and normal distance L was established. Based on these factors, we designed a far-infrared emitter combination model with a uniform field energy. Results revealed that the field energy of this model was evenly distributed to achieve the desired effect.
    SHAN Shaoqi, WU Jinmin, WEN Yaxin, LI Biansheng, GUO Xiaoxue, LI Yuming, RUAN Zheng, LI Dandan, WU Zidong. Irradiation Characteristics of Point-shaped Far-Infrared Emission Source and Combination[J]. Infrared Technology, 2021, 43(1): 79
    Download Citation