• Acta Optica Sinica
  • Vol. 41, Issue 14, 1416001 (2021)
Jun Lan1、2, Jinsong Chen1、2, Zhigang Xiao3, Lixin Zhao1、2, Song Hu1、2, and Yong Yang1、2、*
Author Affiliations
  • 1State Key Laboratory of Optical Technologies for Micro-Fabrication, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Leshan Normal University, Leshan, Sichuan 614000, China
  • show less
    DOI: 10.3788/AOS202141.1416001 Cite this Article Set citation alerts
    Jun Lan, Jinsong Chen, Zhigang Xiao, Lixin Zhao, Song Hu, Yong Yang. Simulation of Broadband Anti-Reflective and Bud-Shaped Moth-Eye Structure[J]. Acta Optica Sinica, 2021, 41(14): 1416001 Copy Citation Text show less
    References

    [1] Liu X J, Da Y, Sun B Q et al. The effects of nano/micro-scale hierarchical structures on the performance of silicon/organic heterojunction solar cells[J]. Solar Energy, 182, 1-8(2019).

    [2] Tommila J, Aho A, Tukiainen A et al. Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell[J]. Progress in Photovoltaics: Research and Applications, 21, 1158-1162(2013).

    [3] Chattopadhyay S, Huang Y F, Jen Y J et al. Anti-reflecting and photonic nanostructures[J]. Materials Science and Engineering R, 69, 1-35(2010).

    [4] Li Y F, Zhang J H, Yang B. Antireflective surfaces based on biomimetic nanopillared arrays[J]. Nano Today, 5, 117-127(2010).

    [5] Bernhard C G, Miller W H. A corneal nipple pattern in insect compound eyes[J]. Acta Physiologica Scandinavica, 56, 385-386(1962).

    [6] Garnett E, Yang P. Light trapping in silicon nanowire solar cells[J]. Nano Letters, 10, 1082-1087(2010).

    [7] Pi D, Shan Z H, Wu X K. Nanostructured antireflection micro-optics in the optical fiber communication band[J]. Acta Optica Sinica, 40, 0622002(2020).

    [8] Pan F, Zhang W, Zhang D. Simulation of anti-reflection and light-trapping property of bio-inspired silicon structure[J]. Acta Optica Sinica, 36, 0516002(2016).

    [9] Liu S R, Wang L, Sun Y J et al. Enhancement of light extraction efficiency of LED by bionic moth-eye structure with frustum of a cone[J]. Acta Optica Sinica, 38, 0122001(2018).

    [10] Hui S M, Hua Y Q, Li Z B. Simulation of anti-reflection properties of uniform and hybrid moth-eye structures[J]. Acta Optica Sinica, 39, 0416003(2019).

    [11] Gao Y F, Zhao Q H, Xu X F et al. Research on reflection properties of silicon based solar cells with parabolic cone array structure[J]. Chinese Journal of Lasers, 42, 0808004(2015).

    [12] Zhang H Y, Cui Y, Sun Y et al. Fabrication of environmentally adaptive mid-infrared broadband antireflection components[J]. Chinese Journal of Lasers, 47, 0301006(2020).

    [13] Zhang C, Yi P, Peng L et al. Optimization and continuous fabrication of moth-eye nanostructure array on flexible polyethylene terephthalate substrate towards broadband antireflection[J]. Applied Optics, 56, 2901-2907(2017).

    [14] Cai J G, Qi L M. Recent advances in antireflective surfaces based on nanostructure arrays[J]. Materials Horizons, 2, 37-53(2015).

    [15] Boden S A, Bagnall D M. Tunable reflection minima of nanostructured antireflective surfaces[J]. Applied Physics Letters, 93, 133108(2008).

    [16] Wang X, Yu Y Q, Chu J R. Simulation and research on reflection properties of two-dimension micro/nano structure surface by FDTD method[J]. Acta Photonica Sinica, 41, 159-165(2012).

    [17] Song Y M, Jang S J, Yu J S et al. Bioinspired parabola subwavelength structures for improved broadband antireflection[J]. Small, 6, 984-987(2010).

    [18] Yang L Y, Feng Q, Ng B et al. Hybrid moth-eye structures for enhanced broadband antireflection characteristics[J]. Applied Physics Express, 3, 102602(2010).

    [19] Liu X G, Wang Y F. Shape optimization of a moth-eye structure for omnidirectional and broadband antireflection[J]. Japanese Journal of Applied Physics, 58, 060904(2019).

    [20] Jung J Y, Guo Z Y, Jee S W et al. A strong antireflective solar cell prepared by tapering silicon nanowires[J]. Optics Express, 18, A286-A292(2010).

    [21] Savin H. Repo P, von Gastrow G, et al. Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency[J]. Nature Nanotechnology, 10, 624-628(2015).

    [22] Dewan R, Fischer S. Meyer-Rochow V B, et al. Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells[J]. Bioinspiration & Biomimetics, 7, 016003(2012).

    [23] Wang B, Leu P W. Enhanced absorption in silicon nanocone arrays for photovoltaics[J]. Nanotechnology, 23, 194003(2012).

    [24] Stavenga D G, Foletti S, Palasantzas G et al. Light on the moth-eye corneal nipple array of butterflies[J]. Proceedings Biological Sciences, 273, 661-667(2006).

    [25] Xu H, Lu N, Qi D et al. Biomimetic antireflective Si nanopillar arrays[J]. Small, 4, 1972-1975(2008).

    [26] Garg V, Mote R G, Fu J. Rapid prototyping of highly ordered subwavelength silicon nanostructures with enhanced light trapping[J]. Optical Materials, 94, 75-85(2019).

    Jun Lan, Jinsong Chen, Zhigang Xiao, Lixin Zhao, Song Hu, Yong Yang. Simulation of Broadband Anti-Reflective and Bud-Shaped Moth-Eye Structure[J]. Acta Optica Sinica, 2021, 41(14): 1416001
    Download Citation