• Acta Photonica Sinica
  • Vol. 45, Issue 4, 405001 (2016)
MA Xue-lian* and LA Dong-sheng
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/gzxb20164504.0405001 Cite this Article
    MA Xue-lian, LA Dong-sheng. Low Frequency Compensation for Turbulent Phase Screen Based on Multi-order Frequency Grids[J]. Acta Photonica Sinica, 2016, 45(4): 405001 Copy Citation Text show less
    References

    [1] DIOS F, RECOLONS J, RODRíGUEZ A, et al. Temporal analysis of laser beam propagation in the atmosphere using computer-generated long phase screens[J]. Optics Express, 2008, 16(3): 2206-2220.

    [2] NISTAZAKIS H E, TSIFTSIS T A, TOMBRAS G S. Performance analysis of free-space optical communication systems over atmospheric turbulence channels[J]. Iet Communications, 2009, 3(8): 1402-1409.

    [3] ZHAI Chao, WU Feng, YANG Qing-bo, et al. Simulation research of laser beam atmospheric propagation in free-space optical communication[J]. Chinese Journal of Lasers, 2013, 40(5): 0505004 –1-6.

    [4] PARAMONOV P V, VORONTSOV A M, KUNITSYN V E. A three-dimensional refractive index model for simulation of optical wave propagation in atmospheric turbulence[J]. Waves in Random and Complex Media, 2015, 25(4): 556-575.

    [5] WU H, SHENG S, HUANG Z, et al. Study on beam propagation through a double-adaptive-optics optical system in turbulent atmosphere[J]. Optical and Quantum Electronics, 2013, 45(5): 411-421.

    [6] ZOCCHI F E. A simple analytical model of adaptive optics for direct detection free-space optical communication[J]. Optics Communications, 2005, 248: 359-374.

    [7] YAN H X, LI S S, ZHANG D L, et al. Numerical simulation of an adaptive optics system with laser propagation in the atmosphere[J]. Applied Optics, 2000, 39(18): 3023-3031.

    [8] FLECK J A, MORRIS J R, FEIT M D. Time-dependent propagation of high energy Laser beams through the atmosphere[J]. Applied Physics, 1976, 10(2): 129-160.

    [9] HERMAN B J, STRUGALA L A. Method for inclusion of low-frequency contributions in numerical representation of atmospheric turbulence[C]. SPIE, 1990, 1221: 183-192.

    [10] LANE R G, GLINDEMANN A, DAINTY J C. Simulation of a Kolmogorov phase screen[J]. Waves Random Media, 1992, 2(3): 209-224.

    [11] JOHANSSON E M, GAVEL D T. Simulation of stellar speckle imaging[C]. SPIE, 1994, 2200: 372-383.

    [12] ZHANG Bao-dong, QIN Shi-qiao, WANG Xing-shu. Accurate and fast simulation of Kolmogorov phase screen by combining spectral method with Zernike polynomials method[J]. Chinese Optics Letters, 2010, 8(10): 969-971.

    [13] CARBILLET M, RICCARDI A. Numerical modeling of atmospherically perturbed phase screens: new solutions for classical fast Fourier transform and Zernike methods[J]. Applied Optics, 2010, 49(31): G47-G52.

    [14] XIANG J. Accurate compensation of the low-frequency components for the FFT-based turbulent phase screen[J]. Optics Express, 2012, 20(1): 681-687.

    [15] XIANG J. Fast and accurate simulation of the turbulent phase screen using fast Fourier transform[J]. Optical Engineering, 2014, 53(1): 016110.

    [16] SEDMAK G. Implementation of fast-Fourier-transform-based simulations of extra-large atmospheric phase and scintillation screens[J]. Applied Optics, 2004, 43(23): 4527-4538.

    [17] WANG Jian-ye, RAO Rui-zhong, LIU Xiao-chun. Comparison of experimental study of atmospheric coherence length[J]. Chinese Journal of Lasers, 2005, 32(1): 64-66.

    [18] ASSEMAT F, WILSON R W, GENDRON E. Method for simulating infinitely long and non stationary phase screens with optimized memory storage[J]. Optics Express, 2006, 14(3):988-999.

    [19] ANDREWS L C, PHILLIPS R L. Laser beam propagation through random media[M]. 2nd ed. Washington USA: SPIE Press, 2005: 67-72.

    MA Xue-lian, LA Dong-sheng. Low Frequency Compensation for Turbulent Phase Screen Based on Multi-order Frequency Grids[J]. Acta Photonica Sinica, 2016, 45(4): 405001
    Download Citation