• Opto-Electronic Engineering
  • Vol. 46, Issue 7, 80339 (2019)
Xiang Yi1、2, Wang Yi1、2、*, Zhang Jiachen1、2, Cai Huaiyu1、2, and Chen Xiaodong1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.12086/oee.2019.180339 Cite this Article
    Xiang Yi, Wang Yi, Zhang Jiachen, Cai Huaiyu, Chen Xiaodong. Target location estimation for vehicle dual radar based on unscented Kalman filter[J]. Opto-Electronic Engineering, 2019, 46(7): 80339 Copy Citation Text show less
    References

    [1] Yang F. The current status and future prospect of driverless vehicles[J]. Shanghai auto, 2014(3): 35–40.

    [2] Wang J, Su J B, Xi Y G. Summary of multisensor fusion[J]. Journal of Data Acquisition & Processing, 2004, 19(1): 72–77.

    [3] Gao Z H, Wang J, Tong J, et al. Target motion state estimation for vehicle-borne millimeter-wave radar[J]. Journal of Jilin Uni-versity (Engineering and Technology Edition), 2014, 44(6): 1537–1544.

    [4] Sun Y, Jing B. Consistent and reliable fusion of multi-sensor based on support degree[J]. Chinese Journal of Sensors and Actuators, 2005, 18(3): 537–539.

    [5] Zhao W L. Technology research of the multi-objective detection and tracking for intelligent vehicle based on radars[D]. Changsha: Central South University, 2011.

    [6] Xia Z W, Li Q, Wang Q. Simulation of coherent lidar range image restoration based on kalman filtering[J]. Laser & Optoe-lectronics Progress, 2011, 48(5): 051002.

    [7] Huang Z, Yang L H, Zhao Z Y, et al. Research on optoelectronic scanning dynamic coordinate measurement algorithm based on extended kalman filter[J]. Laser & Optoelectronics Progress, 2016, 53(5): 51201.

    [8] Ning Q H, Zhang Y B, Liu L, et al. Optimization algorithm for target tracking based on extended Kalman filtering[J]. Journal of Detection & Control, 2016, 38(1): 90–94.

    [9] Xie G T, Gao H B, Qian L J, et al. Vehicle trajectory prediction by integrating physics- and maneuver-based approaches using interactive multiple models[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5999–6008.

    [10] Yomchinda T. A method of multirate sensor fusion for target tracking and localization using extended Kalman filter[C]//Asian Conference on Defence Technology-Japan, 2017: 1–7.

    [11] Cai L, Liu Y H. Application of lossless Kalman filtering algorithm in target tracking[J]. Automation & Instrumentation, 2015(7): 112–115.

    [12] Jagan B O L, Rao S K, Lakshmi M K. Concert assessment of unscented and cubature kalman filters for target tracking[J]. Journal of Advanced Research in Dynamical & Control Sys-tems, 2017, 9(4): 72–80.

    [13] Fang J C, Zhou X L, Mao X S. Doppler laser radar for measur-ing range and speed simultaneously[J]. Opto-Electronic Engi-neering, 2016, 43(12): 212–218.

    [14] Liu H J, Lai S F. Fast square root CKF for automotive millime-ter-wave radar target tracking[J]. Journal of Nanjing University of Science and Technology, 2016, 40(1): 56–60, 66.

    [15] Moras J, Cherfaoui V, Bonnifait P. A lidar perception scheme for intelligent vehicle navigation[C]//2010 11th International Con-ference on Control Automation Robotics & Vision, 2010: 1809–1814.

    [16] Su Y P, Wang Z W. Target motion model in polar coordinates[J]. Henan Science, 2012, 30(2): 168–172.

    Xiang Yi, Wang Yi, Zhang Jiachen, Cai Huaiyu, Chen Xiaodong. Target location estimation for vehicle dual radar based on unscented Kalman filter[J]. Opto-Electronic Engineering, 2019, 46(7): 80339
    Download Citation