• Acta Optica Sinica
  • Vol. 43, Issue 6, 0612005 (2023)
Gaoyong Shi1、2、3, Ruifang Yang2、3、*, Nanjing Zhao2、3、**, Liangchen Liu1、2、3, Jinqiang Yang1、2、3, Peng Huang2、3、4, Gaofang Yin2、3, Li Fang2、3, and Wenqing Liu2、3
Author Affiliations
  • 1College of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, Anhui, China
  • 2Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
  • 3Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, Anhui, China
  • 4School of Biology, Food and Environment, Hefei University, Hefei 230601, Anhui, China
  • show less
    DOI: 10.3788/AOS221436 Cite this Article Set citation alerts
    Gaoyong Shi, Ruifang Yang, Nanjing Zhao, Liangchen Liu, Jinqiang Yang, Peng Huang, Gaofang Yin, Li Fang, Wenqing Liu. Rapid Detection Method of Total Amount of Aromatic Hydrocarbons in Soil Based on Fluorescence Imaging Technology[J]. Acta Optica Sinica, 2023, 43(6): 0612005 Copy Citation Text show less
    Three-dimensional fluorescence spectra of oils. (a) Gasoline; (b) diesel fuel; (c) crude
    Fig. 1. Three-dimensional fluorescence spectra of oils. (a) Gasoline; (b) diesel fuel; (c) crude
    Spectral curve of 280 nm ultraviolet light source
    Fig. 2. Spectral curve of 280 nm ultraviolet light source
    Spectral response range curve of CCD camera
    Fig. 3. Spectral response range curve of CCD camera
    Transmissivity of filter
    Fig. 4. Transmissivity of filter
    Schematic diagram of fluorescence detection system
    Fig. 5. Schematic diagram of fluorescence detection system
    Physical picture of prepared soil sheet
    Fig. 6. Physical picture of prepared soil sheet
    Experimental system
    Fig. 7. Experimental system
    Fluorescence image of blank soil sample
    Fig. 8. Fluorescence image of blank soil sample
    Fluorescence images of calibrated samples
    Fig. 9. Fluorescence images of calibrated samples
    Calibration curve
    Fig. 10. Calibration curve
    Fluorescence images of tested samples
    Fig. 11. Fluorescence images of tested samples
    Fluorescence value curve of test samples
    Fig. 12. Fluorescence value curve of test samples
    Mass fraction of oil in soil /%Mass of soil with 5% oil /gBlank /gMass fraction of oil in soil /%

    Mass of soil with 5%

    oil /g

    Blank /gMass fraction of oil in soil /%

    Mass of soil with 5%

    oil /g

    Blank /g
    0.10.29.81.02.08.01.93.86.2
    0.20.49.61.12.27.82.04.06.0
    0.30.69.41.22.47.62.14.25.8
    0.40.89.21.32.67.42.24.45.6
    0.51.09.01.42.87.22.34.65.4
    0.61.28.81.53.07.02.44.85.2
    0.71.48.61.63.26.82.55.05.0
    0.81.68.41.73.46.6
    0.91.88.21.83.66.4
    Table 1. Preparation of samples containing different mass fractions of oil
    Test No.ValueTest No.ValueTest No.ValueTest No.Value
    1100.3226100.43511100.45616100.363
    2100.3517100.38712100.48817100.419
    3100.4068100.48313100.44718100.534
    4100.3609100.41214100.52419100.439
    5100.32810100.43215100.46120100.373
    Table 2. Results of 20 blank sample tests
    Mass fraction /%0.200.300.400.500.700.800.901.001.101.20
    1 s103.591106.261106.766108.372111.059116.711120.969122.033126.043124.553
    2 s103.513106.032106.805107.786110.792115.417119.132121.410123.827124.182
    3 s103.555105.84106.819106.683110.701114.259119.451120.236122.073123.595
    4 s103.478105.596106.737106.449110.478113.839116.119119.765120.593122.460
    5 s103.484104.688106.837106.314110.401113.659115.624119.462120.015121.861
    Average103.524105.683106.793107.121110.686114.777118.259120.581122.510123.330
    Mass fraction /%1.301.401.601.701.802.002.102.202.302.40
    1 s132.123131.146132.636138.967139.740146.028149.549150.750153.684155.712
    2 s127.331127.694131.352136.203138.981144.371146.727149.326150.496153.831
    3 s124.318126.584130.977134.475137.335143.198144.942147.746148.372152.236
    4 s122.491124.013130.671132.904135.867141.501142.985146.318146.583150.487
    5 s120.811122.672129.552131.375134.441141.023141.295145.762144.741149.098
    Average125.415126.422131.038134.785137.273143.224145.099147.980148.775152.273
    Table 3. Mean fluorescence values of test samples
    Mass fraction /10-6Mean fluorescenceInversion /10-6Deviation /%Mass fraction /10-6Mean fluorescenceInversion /10-6Deviation /%
    2000103.524295047.72813000125.415128301.275
    3000105.683393030.96114000126.422132905.081
    4000106.793443010.74016000131.038153703.925
    5000107.12145808.44817000134.785170600.371
    7000110.686619011.61718000137.273181901.033
    8000114.77780300.41320000143.224202304.360
    9000118.25996006.71821000145.099208703.420
    10000120.581106506.52722000147.980217204.630
    11000122.510115204.75823000148.775230201.640
    12000123.330118900.88824000152.273233803.983
    Table 4. Inversion mass fractions and deviations of test samples
    Gaoyong Shi, Ruifang Yang, Nanjing Zhao, Liangchen Liu, Jinqiang Yang, Peng Huang, Gaofang Yin, Li Fang, Wenqing Liu. Rapid Detection Method of Total Amount of Aromatic Hydrocarbons in Soil Based on Fluorescence Imaging Technology[J]. Acta Optica Sinica, 2023, 43(6): 0612005
    Download Citation