• Laser & Optoelectronics Progress
  • Vol. 56, Issue 1, 011401 (2019)
Jin Yang, Yude Liu*, Wentian Shi, Feifei Zhang, Bin Qi, and Dong Han
Author Affiliations
  • School of Materials Science and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048, China
  • show less
    DOI: 10.3788/LOP56.011401 Cite this Article Set citation alerts
    Jin Yang, Yude Liu, Wentian Shi, Feifei Zhang, Bin Qi, Dong Han. Process Optimization and Performance Investigation in Selective Laser Melting of Large Layer-Thickness 316L Powder[J]. Laser & Optoelectronics Progress, 2019, 56(1): 011401 Copy Citation Text show less
    References

    [1] Francois M M, Sun A, King W E et al. Modeling of additive manufacturing processes for metals: challenges and opportunities[J]. Current Opinion in Solid State and Materials Science, 21, 198-206(2017). http://www.sciencedirect.com/science/article/pii/S1359028616300833

    [2] Yang Y Q, Chen J, Song C H et al. Current status and progress on technology of selective laser melting of metal parts[J]. Laser & Optoelectronics Progress, 55, 011401(2018).

    [3] Yang Y Q, Wang D, Wu W H. Research progress of direct manufacturing of metal parts by selective laser melting[J]. Chinese Journal of Lasers, 38, 0601007(2011).

    [4] Wang D. YangY Q, Wu W H. Process optimization for 316L stainless steel by fiber laser selective melting[J]. Chinese Journal of Lasers, 36, 3233-3239(2009).

    [5] Rombouts M, Kruth J P, Froyen L et al. Fundamentals of selective laser melting of alloyed steel powders[J]. CIRP Annals, 55, 188-192(2006). http://www.sciencedirect.com/science/article/pii/S0007850607603953

    [6] Yadroitsev I, Bertrand Ph, Smurov I. Parametric analysis of the selective laser melting process[J]. Applied Surface Science, 253, 8064-8069(2007). http://www.sciencedirect.com/science/article/pii/S0169433207003534

    [7] Yasa E, Kruth J P. Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting[J]. Procedia Engineering, 19, 389-395(2011). http://www.sciencedirect.com/science/article/pii/S1877705811029390

    [8] Cherry J A, Davies H M, Mehmood S et al. Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting[J]. The international Journal of Advanced Manufacturing Technology, 76, 869-879(2015). http://link.springer.com/article/10.1007/s00170-014-6297-2

    [9] Yang Y Q, Lu J B, Luo Z Y et al. Accuracy and density optimization in directly fabricating customized orthodontic production by selective laser melting[J]. Rapid Prototyping Journal, 18, 482-489(2012). http://www.emeraldinsight.com/doi/full/10.1108/13552541211272027

    [10] Niendorf T, Leuders S, Riemer A et al. Highly anisotropic steel processed by selective laser melting[J]. Metallurgical and Materials Transactions B, 44, 794-796(2013). http://link.springer.com/article/10.1007/s11663-013-9875-z

    [11] Sun Z J, Tan X P, Tor S B et al. Selective laser melting of stainless steel 316L with low porosity and high build rates[J]. Materials & Design, 104, 197-204(2016). http://www.sciencedirect.com/science/article/pii/S0264127516306372

    [12] Ma M M, Wang Z M, Gao M et al. Layer thickness dependence of performance in high-power selective laser melting of 1Cr18Ni9Ti stainless steel[J]. Journal of Materials Processing Technology, 215, 142-150(2015). http://www.sciencedirect.com/science/article/pii/S0924013614002933

    [13] Shi X Z, Ma S Y, Liu C M et al. Performance of high layer thickness in selective laser melting of Ti6Al4V[J]. Materials, 9, 975(2016). http://www.ncbi.nlm.nih.gov/pubmed/28774097

    [14] Herzog D, Seyda V, Wycisk E et al. Additive manufacturing of metals[J]. Acta Materialia, 117, 371-392(2016).

    [15] Li R D, Shi Y S, Wang Z G et al. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting[J]. Applied Surface Science, 256, 4350-4356(2010). http://www.sciencedirect.com/science/article/pii/S0169433210001947

    [16] Zhao S M, Shen X F, Yang J L et al. Investigation of densification, microstructural and mechanical properties of water-atomized 316L stainless steel parts fabricated by selective laser melting[J]. Applied Laser, 37, 319-326(2017). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-YYJG201703003.htm

    [17] Frazier W E. Metal additive manufacturing: a review[J]. Journal of Materials Engineering and Performance, 23, 1917-1928(2014). http://www.tandfonline.com/servlet/linkout?suffix=CIT0001&dbid=16&doi=10.1080%2F13621718.2017.1388995&key=10.1007%2Fs11665-014-0958-z

    [18] Yap C Y, Chua C K, Dong Z L et al. Review of selective laser melting: Materials and applications[J]. Applied Physics Reviews, 2, 041101(2015).

    [19] Wu W H, Yang Y Q, Wang D. Balling phenomenon in selective laser melting process[J]. Journal of South China University of Technology (Natural Science Edition), 38, 110-115(2010).

    [20] Tolochko N K, Mozzharov S E, Yadroitsev I A et al. Balling processes during selective laser treatment of powders[J]. Rapid Prototyping Journal, 10, 78-87(2004). http://www.emeraldinsight.com/doi/full/10.1108/13552540410526953

    [21] Khairallah S A, Anderson A T, Rubenchik A et al. Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones[J]. Acta Materialia, 108, 36-45(2016). http://www.sciencedirect.com/science/article/pii/S135964541630088X

    [22] Gunenthiram V, Peyre P, Schneider M et al. Analysis of laser-melt pool-powder bed interaction during the selective laser melting of a stainless steel[J]. Journal of Laser Applications, 29, 022303(2017). http://adsabs.harvard.edu/abs/2017JLasA..29b2303G

    [23] Zhang B C, Dembinski L, Coddet C. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder[J]. Materials Science and Engineering: A, 584, 21-31(2013). http://www.sciencedirect.com/science/article/pii/S0921509313007065

    [24] Mirza F A, Chen D L. A unified model for the prediction of yield strength in particulate-reinforced metal matrix nanocomposites[J]. Materials, 8, 5138-5153(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC5455512/

    [25] Ahmadi A, Mirzaeifar R, Moghaddam N S et al. Effect of manufacturing parameters on mechanical properties of 316L stainless steel parts fabricated by selective laser melting: a computational framework[J]. Materials & Design, 112, 328-338(2016). http://www.sciencedirect.com/science/article/pii/S0264127516312175

    [26] Mertens A I, Reginster S, Paydas H et al. Mechanical properties of alloy Ti-6Al-4V and of stainless steel 316L processed by selective laser melting: influence of out-of-equilibrium microstructures[J]. Powder Metallurgy, 57, 184-189(2014). http://www.tandfonline.com/doi/full/10.1179/1743290114Y.0000000092

    [27] Zhang K, Wang S J, Liu W J et al. Characterization of stainless steel parts by Laser Metal Deposition Shaping[J]. Materials & Design, 55, 104-119(2014). http://www.sciencedirect.com/science/article/pii/S026130691300856X

    Jin Yang, Yude Liu, Wentian Shi, Feifei Zhang, Bin Qi, Dong Han. Process Optimization and Performance Investigation in Selective Laser Melting of Large Layer-Thickness 316L Powder[J]. Laser & Optoelectronics Progress, 2019, 56(1): 011401
    Download Citation