• Journal of Inorganic Materials
  • Vol. 37, Issue 2, 129 (2021)
Wanhai WANG, Jie ZHOU*, and Weihua TANG
Author Affiliations
  • School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • show less
    DOI: 10.15541/jim20210117 Cite this Article
    Wanhai WANG, Jie ZHOU, Weihua TANG. Passivation Strategies of Perovskite Film Defects for Solar Cells[J]. Journal of Inorganic Materials, 2021, 37(2): 129 Copy Citation Text show less
    Crystal structure of perovskite[3]
    1. Crystal structure of perovskite[3]
    (a) Schematic diagram of defects in perovskite film[10]; (b) Transition energy levels of intrinsic acceptors and intrinsic donors in MAPbI3[15]; (c) Schematic diagram of passivation strategies of defects
    2. (a) Schematic diagram of defects in perovskite film[10]; (b) Transition energy levels of intrinsic acceptors and intrinsic donors in MAPbI3[15]; (c) Schematic diagram of passivation strategies of defects
    (a) Energy level alignment of MAPbI3 film and PbI2[21]; (b) Scanning electron microscopy(SEM) image of MAPbI3 film with PbI2 wrapping the perovskite grain[21]; (c) Schematic diagram of mechanism for PbI2 passivation in CH3NH3PbI3 film[21]; (d) Schematic diagram of mechanism for K+ passivation[27]; (e) Photoluminescence quantum efficiency(PLQE) of passivated perovskite thin films with increasing fraction of potassium[27]; (f) Current density-voltage curves of the best-performing solar cells with (Cs, MA, FA) Pb(I0.4Br0.6)3 absorbers without and with potassium passivation[27]; (g) Stability for the Cs10Rb5FAPbI3 device[28]; (h) UV-Vis absorption spectra of the PCBM-perovskite hybrid solution[34]
    3. (a) Energy level alignment of MAPbI3 film and PbI2[21]; (b) Scanning electron microscopy(SEM) image of MAPbI3 film with PbI2 wrapping the perovskite grain[21]; (c) Schematic diagram of mechanism for PbI2 passivation in CH3NH3PbI3 film[21]; (d) Schematic diagram of mechanism for K+ passivation[27]; (e) Photoluminescence quantum efficiency(PLQE) of passivated perovskite thin films with increasing fraction of potassium[27]; (f) Current density-voltage curves of the best-performing solar cells with (Cs, MA, FA) Pb(I0.4Br0.6)3 absorbers without and with potassium passivation[27]; (g) Stability for the Cs10Rb5FAPbI3 device[28]; (h) UV-Vis absorption spectra of the PCBM-perovskite hybrid solution[34]
    (a) Schematic diagram of MAPbI3 perovskite films crystallization processes[39]; (b) Chemical structure of caffeine[41]; (c) Fourier Transform infrared spectroscopy (FT-IR) spectra and magnified fingerprint regions of pure caffeine, caffeine-MAPbI3, and the pristine MAPbI3 films[41]; (d) FT-IR spectra of PbI2-PMMA and pristine PMMA films[43]; (e) Top view SEM images of perovskite films without (left) and with (right) 0.6 mg∙mL-1 TDZDT [44]; (f) Photographs and schematic process for formation of FAPbI3 perovskite films by using NMP[45]; (g) Chemical structures of SP1, SP2 and SP3[48]; (h) Schematic illustration of the passivation process of donor-acceptor molecules for under-coordinated Pb2+ cations[48]; (i) Statistic trap densities for the control and passivated perovskite films derived from the space charge limit current (SCLC) measurement[48]
    4. (a) Schematic diagram of MAPbI3 perovskite films crystallization processes[39]; (b) Chemical structure of caffeine[41]; (c) Fourier Transform infrared spectroscopy (FT-IR) spectra and magnified fingerprint regions of pure caffeine, caffeine-MAPbI3, and the pristine MAPbI3 films[41]; (d) FT-IR spectra of PbI2-PMMA and pristine PMMA films[43]; (e) Top view SEM images of perovskite films without (left) and with (right) 0.6 mg∙mL-1 TDZDT [44]; (f) Photographs and schematic process for formation of FAPbI3 perovskite films by using NMP[45]; (g) Chemical structures of SP1, SP2 and SP3[48]; (h) Schematic illustration of the passivation process of donor-acceptor molecules for under-coordinated Pb2+ cations[48]; (i) Statistic trap densities for the control and passivated perovskite films derived from the space charge limit current (SCLC) measurement[48]
    (a) Schematic illustration of two neighbouring grain structures crosslinked by butylphosphonic acid 4-ammonium chloride (4-ABPACl)[50]; (b) Surface SEM images of pristine (control) and 4-ABPA-anchored (CH3NH3PbI3-ABPA) perovskite films deposited on mp-TiO2/FTO substrates[50]; (c) Variations of X-ray diffraction(XRD) spectra patterns of the FASnI3-EDAI2 1% film at different duration of storage[51]; (d) Schematic diagram of RATZ passivation[53]; (e) Schematic diagram of thiophene passivation[55]; (f) Theoretical model of perovskite with molecular surface passivation of PbI antisite with theophylline[61]; (g) Statistical photovoltaic parameters of PCE depending on pKa[64]
    5. (a) Schematic illustration of two neighbouring grain structures crosslinked by butylphosphonic acid 4-ammonium chloride (4-ABPACl)[50]; (b) Surface SEM images of pristine (control) and 4-ABPA-anchored (CH3NH3PbI3-ABPA) perovskite films deposited on mp-TiO2/FTO substrates[50]; (c) Variations of X-ray diffraction(XRD) spectra patterns of the FASnI3-EDAI2 1% film at different duration of storage[51]; (d) Schematic diagram of RATZ passivation[53]; (e) Schematic diagram of thiophene passivation[55]; (f) Theoretical model of perovskite with molecular surface passivation of PbI antisite with theophylline[61]; (g) Statistical photovoltaic parameters of PCE depending on pKa[64]
    AdditivePerovskiteFunctional groupPCEStabilityRef.
    PbI2(FAPbI3)1-x(MAPbBr3)xPb2+21.6%-[22]
    MACl(Cs,FA,MA)PbBrxI1-xMA+21.65%N2, rt, 500 h, 96% [24]
    NaCl(FAPbI3)1-x(MAPbBr3)xNa+20.2%-[26]
    RbIRb5Cs10FAPbI3Rb+20.35%N2, rt, 1000 h,>98% [28]
    MnCl2CsPbI2Br Mn2+13.47%25 ℃, 25%-35% RH, 35 d, 97%[30]
    NiCl2MAPbI3Ni2+20.61%-[31]
    ZnI2CsPbI2Br Zn2+12.16%N2, 60% RH, 500 h, 76% [32]
    bis-PCBM(FAI)0.81(PbI2)0.85(MABr)0.15(PbBr2)0.15Fullerene20.8%Air, 65 ℃, 60% RH, 44 d, 90.1%[35]
    CaffeineMAPbI3O donor20.25%N2, 85 ℃, 1300 h, 86% [41]
    PVPCH3NH3PbI3N donor20.2%N2, 2500 h, 85% [42]
    PMMA(FAI)0.81(PbI2)0.85(MAPbBr3)0.15O donor21.6%Air, 60 d, 96.7%[43]
    NMPFAPbI3O donor20.19%-[45]
    D4TBPCs0.05FA0.81MA0.14PbI2.55Br0.45N donor21.4%-[47]
    SP3MAPbI3O,S donor20.43%Air, 30% RH, 30 d,86%[48]
    EDAI2FASnI3N donor8.9%Air, 20 ℃, 50% RH, 2000 h, >90%[51]
    RATZMAPbI3N donor20.03%Air, (40±5)% RH, 3500 h, 80%[53]
    Table 1. Additives during perovskite formation and their device performance
    AdditivePerovskiteFunctional groupPCEStabilityRef.
    MMIMAPbI3N, S donor20.10%N2, 2184 h, 94% [59]
    P3HTCsPbI2Br S donor12.02%N2, 960 h, 90% [60]
    Theophylline(FAPbI3)x(MAPbBr3)1-xN, O donor22.6%N2, 40 ℃, 30%-40% RH, 500 h, >90% [61]
    2-MPMAPbI3N, S donor20.28%Air, 60%-70% RH, 60 d, 93%[62]
    TPFPCs0.05FA0.8MA0.15Pb(I0.83Br0.17)3P donor22.02%75% RH, 14 d, 63%[63]
    CYClFAPbI3N donor24.98%(22±5) ℃, (25±10)% RH, 1300 h, 91%[64]
    FEAICs0.06 FA1.38MA0.06 Pb1.6 I4.72D perovskite22.1%Air, 40% RH, 1000 h, 90%[67]
    C6Br (FAPbI3)0.92(MAPbBr3)0.082D perovskite23.4%-[68]
    PEAIFA1-xMAxPbI32D perovskite23.32%N2, 85 ℃, 500 h, >80% [70]
    Table 2. Post-treatment additives and their device performance
    Wanhai WANG, Jie ZHOU, Weihua TANG. Passivation Strategies of Perovskite Film Defects for Solar Cells[J]. Journal of Inorganic Materials, 2021, 37(2): 129
    Download Citation