• Acta Optica Sinica
  • Vol. 42, Issue 14, 1411002 (2022)
Yuancheng Li1, Aiping Zhai1、*, Teng Zhang1, Wenjing Zhao1, and Dong Wang1、2
Author Affiliations
  • 1College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, Shanxi , China
  • 2Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi , China
  • show less
    DOI: 10.3788/AOS202242.1411002 Cite this Article Set citation alerts
    Yuancheng Li, Aiping Zhai, Teng Zhang, Wenjing Zhao, Dong Wang. Three-Dimensional Imaging Through Scattering Media by Improving Signal-to-Noise Ratio of Point Spread Function Using Cumulative Average[J]. Acta Optica Sinica, 2022, 42(14): 1411002 Copy Citation Text show less
    References

    [1] Yaqoob Z, Psaltis D, Feld M S et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2, 110-115(2008).

    [2] Liu C, Chen J B, Zhang Y C et al. Five-wavelength optical-resolution photoacoustic microscopy of blood and lymphatic vessels[J]. Advanced Photonics, 3, 016002(2021).

    [3] Lim J, Ayoub A B, Psaltis D. Three-dimensional tomography of red blood cells using deep learning[J]. Advanced Photonics, 2, 026001(2020).

    [4] Hugonnet H, Kim Y W, Lee M et al. Multiscale label-free volumetric holographic histopathology of thick-tissue slides with subcellular resolution[J]. Advanced Photonics, 3, 026004(2021).

    [5] Katz O, Small E, Silberberg Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light[J]. Nature Photonics, 6, 549-553(2012).

    [6] Horstmeyer R, Ruan H, Yang C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue[J]. Nature Photonics, 9, 563-571(2015).

    [7] Vellekoop I M. Feedback-based wavefront shaping[J]. Optics Express, 23, 12189-12206(2015).

    [8] Xu X, Liu H, Wang L V. Time-reversed ultrasonically encoded optical focusing into scattering media[J]. Nature Photonics, 5, 154-157(2011).

    [9] Wang Y M, Judkewitz B, DiMarzio C A et al. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light[J]. Nature Communications, 3, 928(2012).

    [10] Liu Y, Lai P, Ma C et al. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light[J]. Nature Communications, 6, 5904(2015).

    [11] Zhu T F, Huang J Y, Ruan Z C. Optical phase mining by adjustable spatial differentiator[J]. Advanced Photonics, 2, 016001(2020).

    [12] Gianani I, Suprano A, Giordani T et al. Transmission of vector vortex beams in dispersive media[J]. Advanced Photonics, 2, 036003(2020).

    [13] Popoff S M, Lerosey G, Carminati R et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 104, 100601(2010).

    [14] Chaigne T, Katz O, Boccara A C et al. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix[J]. Nature Photonics, 8, 58-64(2014).

    [15] Andreoli D, Volpe G, Popoff S et al. Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix[J]. Scientific Reports, 5, 10347(2015).

    [16] Freund I, Rosenbluh M, Feng S. Memory effects in propagation of optical waves through disordered media[J]. Physical Review Letters, 61, 2328-2331(1988).

    [17] Feng S, Kane C, Lee P A et al. Correlations and fluctuations of coherent wave transmission through disordered media[J]. Physical Review Letters, 61, 834-837(1988).

    [18] Bertolotti J, van Putten E G, Blum C et al. Non-invasive imaging through opaque scattering layers[J]. Nature, 491, 232-234(2012).

    [19] Katz O, Heidmann P, Fink M et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature Photonics, 8, 784-790(2014).

    [20] Guo C F, Liu J T, Wu T F et al. Tracking moving targets behind a scattering medium via speckle correlation[J]. Applied Optics, 57, 905-913(2018).

    [21] Cua M, Zhou E H, Yang C. Imaging moving targets through scattering media[J]. Optics Express, 25, 3935-3945(2017).

    [22] Xie X S, Liu Y K, Liang H W et al. Speckle correlation imaging: from point spread functions to light field plenoptics[J]. Acta Optica Sinica, 40, 0111004(2020).

    [23] Zhu L, Shao X P. Research progress on scattering imaging technology[J]. Acta Optica Sinica, 40, 0111005(2020).

    [24] Stern G, Katz O. Noninvasive focusing through scattering layers using speckle correlations[J]. Optics Letters, 44, 143-146(2019).

    [25] Wang D, Sahoo S K, Zhu X et al. Non-invasive super-resolution imaging through dynamic scattering media[J]. Nature Communications, 12, 3150(2021).

    [26] Ruan H W, Haber T, Liu Y et al. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping[J]. Optica, 4, 1337-1343(2017).

    [27] Xie X, Zhuang H, He H et al. Extended depth-resolved imaging through a thin scattering medium with PSF manipulation[J]. Scientific Reports, 8, 4585(2018).

    [28] Jin X, Wang Z P, Wang X Y et al. Depth of field extended scattering imaging by light field estimation[J]. Optics Letters, 43, 4871-4874(2018).

    [29] Salhov O, Weinberg G, Katz O. Depth-resolved speckle-correlations imaging through scattering layers via coherence gating[J]. Optics Letters, 43, 5528-5531(2018).

    [30] Mukherjee S, Vijayakumar A, Kumar M et al. 3D imaging through scatterers with interferenceless optical system[J]. Scientific Reports, 8, 1134(2018).

    [31] Shi Y Y, Liu Y W, Wang J M et al. Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax[J]. Applied Physics Letters, 110, 231101(2017).

    [32] Okamoto Y, Horisaki R, Tanida J. Noninvasive three-dimensional imaging through scattering media by three-dimensional speckle correlation[J]. Optics Letters, 44, 2526-2529(2019).

    [33] Horisaki R, Okamoto Y, Tanida J. Single-shot noninvasive three-dimensional imaging through scattering media[J]. Optics Letters, 44, 4032-4035(2019).

    [34] Li W, Liu J T, He S F et al. Multitarget imaging through scattering media beyond the 3D optical memory effect[J]. Optics Letters, 45, 2692-2695(2020).

    [35] Zhai A P, Li Y C, Zhao W J et al. Single-shot fast 3D imaging through scattering media using structured illumination[EB/OL]. https://arxiv.org/abs/2110.12103

    [36] Edrei E, Scarcelli G. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media[J]. Scientific Reports, 6, 33558(2016).

    [37] Park H, Crozier K B. Multispectral imaging with vertical silicon nanowires[J]. Scientific Reports, 3, 2460(2013).

    [38] Stewart J W, Akselrod G M, Smith D R et al. Toward multispectral imaging with colloidal metasurface pixels[J]. Advanced Materials, 29, 1602971(2017).

    [39] Murphy D B[M]. Fundamentals of light microscopy and electronic imaging, 448-452(2002).

    [40] Martinec E. Noise, dynamic range and bit depth in digital SLRs[EB/OL]. https://homes.psd.uchicago.edu/~ejmartin/pix/20d/tests/noise/

    [41] Healey G E, Kondepudy R. Radiometric CCD camera calibration and noise estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16, 267-276(1994).

    [42] Buades A, Lou Y, Morel J et al. Multi image noise estimation and denoising[EB/OL]. https://hal.archives-ouvertes.fr/hal-00510866

    [43] Su X Y, Chen W J. Fourier transform profilometry: a review[J]. Optics and Lasers in Engineering, 35, 263-284(2001).

    [44] Wang Y J, Zhang S. Optimal fringe angle selection for digital fringe projection technique[J]. Applied Optics, 52, 7094-7098(2013).

    [45] Chen L C, Ho H W, Nguyen X L. Fourier transform profilometry (FTP) using an innovative band-pass filter for accurate 3-D surface reconstruction[J]. Optics and Lasers in Engineering, 48, 182-190(2010).

    Yuancheng Li, Aiping Zhai, Teng Zhang, Wenjing Zhao, Dong Wang. Three-Dimensional Imaging Through Scattering Media by Improving Signal-to-Noise Ratio of Point Spread Function Using Cumulative Average[J]. Acta Optica Sinica, 2022, 42(14): 1411002
    Download Citation