• Journal of Innovative Optical Health Sciences
  • Vol. 10, Issue 5, 1743005 (2017)
[in Chinese]1、*, [in Chinese]2, [in Chinese]2, [in Chinese]2, [in Chinese]2, [in Chinese]2, [in Chinese]2, and [in Chinese]2
Author Affiliations
  • 1Yuri Gagarin State Technical University of Saratov, 77 Politechnicheskaya Street, Saratov 410054, Russia
  • 2Saratov National Research State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
  • show less
    DOI: 10.1142/s1793545817430052 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Characterization of cerebral blood flow dynamics with multiscale entropy[J]. Journal of Innovative Optical Health Sciences, 2017, 10(5): 1743005 Copy Citation Text show less
    References

    [1] C. E. Shannon , “A mathematical theory of communication,” Bell Sys. Tech. J. 27, 379-423 (1948).

    [2] C. Bandt, B. Pompe , “Permutation entropy: A natural complexity measure for time series,” Phys. Rev. Lett. 88, 174102 (2002).

    [3] S. M. Pincus , “Approximate entropy as a measure of system complexity,” Proc. Natl. Acad. Sci. 88, 2297-2301 (1991).

    [4] J. S. Richman, J. R. Moorman , “Physiological time-series analysis using approximate entropy and sample entropy,” Am. J. Physiol. Heart Circ. Physiol. 278, H2039-H2049 (2000).

    [5] A. L. Goldberger, C. K. Peng, L. A. Lipsitz , “What is physiologic complexity and how does it change with aging and disease ” Neurobiol. Aging 23, 23-26 (2002).

    [6] L. A. Lipsitz, A. L. Goldberger , “Loss of ‘complexity’ and aging. Potential applications of fractals and chaos theory to senescence,” J. Am. Med. Assoc. 267, 1806-1809 (1992).

    [7] M. P. Tulppo, A. M. Kiviniemi, A. J. Hautala, M. Kallio, T. Sepponen, T. H. Mokikallio, H. V. Huikuri , “Physiological background of the loss of fractal heart rate dynamics,” Circulation 112, 314-319 (2005).

    [8] A. N. Pavlov, O. N. Pavlova, O. V. Sosnovtseva, E. Mosekilde, N.-H. Holstein-Rathlou , “Characterizing multimode interaction in renal autoregulation,” Physiol. Meas. 29, 945-958 (2008).

    [9] A. N. Pavlov, O. V. Semyachkina-Glushkovskaya, O. N. Pavlova, A. S. Abdurashitov, G. M. Shihalov, E. V. Rybalova, S. S. Sindeev , “Multifractality in cerebrovascular dynamics: An approach for mechanisms-related analysis,” Chaos Solitons Fractals 91, 210-213 (2016).

    [10] S. M. Pincus , “Assessing serial irregularity and its implications for health,” Ann. N. Y. Acad. Sci. 954, 245-267 (2002).

    [11] D. E. Lake, J. S. Richman, M. P. Griffin, J. R. Moorman , “Sample entropy analysis of neonatal heart rate variability,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R789-R797 (2002).

    [12] M. Costa, A. L. Goldberger, C.-K. Peng , “Multiscale entropy analysis of biological signals,” Phys. Rev. E 71, 021906 (2005).

    [13] M. Costa, A. L. Goldberger, C.-K. Peng , “Multiscale entropy analysis of physiologic time series,” Phys. Rev. Lett. 89, 062102 (2002).

    [14] M. Costa, C.-K. Peng, A. L. Goldberger, J. M. Hausdorff , “Multiscale entropy analysis of human gait dynamics,” Physica A 330, 53-60 (2003).

    [15] J. D. Briers, S. Webster , “Laser speckle contrast analysis (LASCA): A nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174-179 (1996).

    [16] D. A. Boas, A. K. Dunn , “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 011109 (2010).

    [17] A. N. Pavlov, O. N. Pavlova, V. V. Tuchin, O. V. Semyachkina-Glushkovskaya, Y. Zhang, O. A. Bibikova, Q. Huang, D. Zhu, P. Li, Q. Luo , “Multiresolution analysis of pathological changes in cerebral venous dynamics in newborn mice with intracranial hemorrhage: Adrenorelated vasorelaxation,” Physiol. Meas. 35, 1983-1999 (2014).

    [18] A. K. Dunn , “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng. 40, 367-377 (2012).

    [19] G. A. Armitage, K. G. Todd, A. Shuaib, I. R. Winship , “Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke,” Cereb. Blood Flow Metab. 30, 1432-1436 (2010).

    [20] A. J. Strong, E. L. Bezzina, P. J. Anderson, M. G. Boutelle, S. E. Hopwood, A. K. Dunn , “Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: Quantitation of perfusion and detection of peri-infarct depolarisations,” J. Cereb. Blood Flow Metab. 26, 645-653 (2006).

    [21] N. Feng, J. Qiu, P. Li, X. Sun, C. Yin, W. Luo, S. Chen, Q. Luo , “Simultaneous automatic arteries-veins separation and cerebral blood flow imaging with single-wavelength laser speckle imaging,” Opt. Express 19, 15777-15791 (2011).

    [22] A. S. Abdurashitov, V. V. Lychagov, O. A. Sindeeva, O. V. Semyachkina-Glushkovskaya, V. V. Tuchin , “Histogram analysis of laser speckle contrast image for cerebral blood flow monitoring,” Front. Optoelectron. 8, 187-194 (2015).

    [23] A. N. Pavlov, A. I. Nazimov, O. N. Pavlova, V. V. Lychagov, V. V. Tuchin, O. A. Bibikova, S. S. Sindeev, O. V. Semyachkina-Glushkovskaya , “Wavelet-based analysis of cerebrovascular dynamics in newborn rats with intracranial hemorrhages,” J. Innov. Opt. Health Sci. 7, 1350055 (2014). Link,

    [24] O. Semyachkina-Glushkovskaya, A. Pavlov, J. Kurths, E. Borisova, A. Gisbrecht, O. Sindeeva, A. Abdurashitov, A. Shirokov, N. Navolokin, E. Zinchenko, A. Gekalyuk, M. Ulanova, D. Zhu, Q. Luo, V. Tuchin , “Optical monitoring of stress-related changes in the brain tissues and vessels associated with hemorrhagic stroke in newborn rats,” Biomed. Opt. Express 6, 4088-4097 (2015).

    [25] O. V. Semyachkina-Glushkovskaya, V. V. Lychagov, A. S. Abdurashitov, O. V. Sindeeva, S. S. Sindeev, E. M. Zinchenko, E. I. Kajbeleva, A. N. Pavlov, M. Kassim, V. V. Tuchin , “Changes in the cerebral blood flow in newborn rats assessed by LSCI and DOCT before and after the hemorrhagic stroke,” Proc. SPIE 9305, 93051D (2015).

    [26] D. D. Duncan, S. J. Kirkpatrick, R. K. Wang , “Statistics of local speckle contrast,” J. Opt. Soc. Am. A 25, 9-15 (2008).

    [27] P. Grassberger , Information and complexity measures in dynamical system, Information Dynamics, by H. AtmanspacherH. Scheingraber, Eds., pp. 15-33, Plenum Press, New York (1991).

    [28] A. L. Goldberger, L. A. Nunes Amaral, L. Glass, J. M. Hausdorff, P. Ch. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, H. E. Stanley , “PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals,” Circulation 101 (23), e215-e220 (2000), Circulation Electronic Pages; http://circ.ahajournals.org/cgi/content/full/101/23/e215.

    [29] A. N. Pavlov, A. S. Abdurashitov, O. A. Sindeeva, S. S. Sindeev, O. N. Pavlova, G. M. Shihalov, O. V. Semyachkina-Glushkovskaya , “Characterizing cerebrovascular dynamics with the wavelet-based multifractal formalism,” Physica A 442, 149-155 (2016).

    [30] N. A. Lassen , “Cerebral blood flow and oxygen consumption in man,” Physiol. Rev. 39, 183-238 (1959).

    [31] L. Beason-Held, A. Moghekar, A. Zonderman, M. Kraut, S. M. Resnick , “Longitudinal changes in cerebral blood flow in the older hypertensive brain,” Stroke 38, 1766-1773 (2007).

    [32] P. J. Gianaros, S. W. Derbyshire, J. C. May, G. J. Siegle, M. A. Gamalo, J. R. Jennings , “Anterior cingulate activity correlates with blood pressure during stress,” Psychophysiology 42 (6), 627-635 (2005).

    [33] P. J. Gianaros, P. J. Greer, C. M. Ryan, J. R. Jennings , “Higher blood pressure predicts lower regional gray matter volume: Consequences on short-term information processing,” Neuroimage 31 (2), 754-765 (2006).

    [34] T. Broman , “The possibilities of the passage of substances from the blood to the central nervous system,” Acta Psychiat. Scacd. 16, 1-25 (1941).

    [35] U. Friedemann , “Blood-brain barrier,” Physiol. Rev. 22, 125-142 (1942).

    [36] O. Semyachkina-Glushkovskaya, A. Abdurashitov, A. Pavlov, A. Shirokov, N. Navolokin, O. Pavlova, A. Gekalyuk, M. Ulanova, N. Shushunova, A. Bodrova, E. Saranceva, A. Khorovodov, I. Agranovich, V. Fedorova, M. Sagatova, A. E. Shareef, C. Zhang, D. Zhu, V. Tuchin , “Laser speckle imaging and wavelet analysis of cerebral blood flow associated with the opening of blood-brain barrier by sound,” Chin. Opt. Lett. 15 (9), 090002 (2017).

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Characterization of cerebral blood flow dynamics with multiscale entropy[J]. Journal of Innovative Optical Health Sciences, 2017, 10(5): 1743005
    Download Citation