• Photonics Research
  • Vol. 6, Issue 5, B43 (2018)
Aude Martin1、2, Sylvain Combrié2, Alfredo de Rossi2、*, Grégoire Beaudoin1, Isabelle Sagnes1, and Fabrice Raineri1、3
Author Affiliations
  • 1Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Sud, Université Paris-Saclay, C2N Marcoussis, 91460 Marcoussis, France
  • 2Thales Research and Technology France, 1 avenue Augustin Fresnel, 91120 Palaiseau, France
  • 3Université Paris Diderot, Sorbone Paris Cité, 75013 Paris, France
  • show less
    DOI: 10.1364/PRJ.6.000B43 Cite this Article Set citation alerts
    Aude Martin, Sylvain Combrié, Alfredo de Rossi, Grégoire Beaudoin, Isabelle Sagnes, Fabrice Raineri. Nonlinear gallium phosphide nanoscale photonics [Invited][J]. Photonics Research, 2018, 6(5): B43 Copy Citation Text show less
    References

    [1] M. Dinu, F. Quochi, H. Garcia. Third-order nonlinearities in silicon at telecom wavelengths. Appl. Phys. Lett., 82, 2954-2956(2003).

    [2] D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics, 7, 597-607(2013).

    [3] C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Bakir, S. Menezo, J. M. Fedeli, D. J. Moss. Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability. Opt. Express, 20, 22609-22615(2012).

    [4] B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, M. Lončar. Diamond nonlinear photonics. Nat. Photonics, 8, 369-374(2014).

    [5] B. J. Eggleton, B. Luther-Davies, K. Richardson. Chalcogenide photonics. Nat. Photonics, 5, 141-148(2011).

    [6] G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, C. T. Seaton. Third order nonlinear integrated optics. J. Lightwave Technol., 6, 953-970(1988).

    [7] M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett., 87, 253902(2001).

    [8] C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, T. F. Krauss. Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides. Opt. Express, 17, 2944-2953(2009).

    [9] A. Martin, S. Combrié, A. D. Rossi. Photonic crystal waveguides based on wide-gap semiconductor alloys. J. Opt., 19, 033002(2016).

    [10] M. S. Shur. Handbook Series on Semiconductor Parameters, 1(1996).

    [11] K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, J. Vučković. Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power. Opt. Express, 17, 22609-22615(2009).

    [12] D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, P. E. Barclay. Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks. Appl. Phys. Lett., 108, 031109(2016).

    [13] K. Rivoire, S. Buckley, J. Vučković. Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion. Opt. Express, 19, 22198-22207(2011).

    [14] M. Gould, S. Chakravarthi, I. R. Christen, N. Thomas, S. Dadgostar, Y. Song, M. L. Lee, F. Hatami, K.-M. C. Fu. Large-scale GaP-on-diamond integrated photonics platform for NV center-based quantum information. J. Opt. Soc. Am. B, 33, B35-B42(2016).

    [15] N. Thomas, R. J. Barbour, Y. Song, M. L. Lee, K.-M. C. Fu. Waveguide-integrated single-crystalline GaP resonators on diamond. Opt. Express, 22, 13555-13564(2014).

    [16] C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, T. F. Krauss. Four-wave mixing in slow light engineered silicon photonic crystal waveguides. Opt. Express, 18, 22915-22927(2010).

    [17] Q. V. Tran, S. Combrié, P. Colman, A. de Rossi. Photonic crystal membrane waveguides with low insertion losses. Appl. Phys. Lett., 95, 061105(2009).

    [18] A. Parini, P. Hamel, A. De Rossi, S. Combrié, Y. Gottesman, R. Gabet, A. Talneau, Y. Jaouen, G. Vadala. Time-wavelength reflectance maps of photonic crystal waveguides: a new view on disorder-induced scattering. J. Lightwave Technol., 26, 3794-3802(2008).

    [19] C. Caër, S. Combrié, X. Le Roux, E. Cassan, A. De Rossi. Extreme optical confinement in a slotted photonic crystal waveguide. Appl. Phys. Lett., 105, 121111(2014).

    [20] I. Cestier, S. Combrié, S. Xavier, G. Lehoucq, A. de Rossi, G. Eisenstein. Chip-scale parametric amplifier with 11  dB gain at 1550  nm based on a slow-light GaInP photonic crystal waveguide. Opt. Lett., 37, 3996-3998(2012).

    [21] P. Colman, C. Husko, S. Combrié, I. Sagnes, C.-W. Wong, A. De Rossi. Temporal solitons and pulse compression in photonic crystal waveguides. Nat. Photonics, 4, 862-868(2010).

    [22] A. Martin, D. Sanchez, S. Combrié, A. de Rossi, F. Raineri. GaInP on oxide nonlinear photonic crystal technology. Opt. Lett., 42, 599-602(2017).

    [23] J. Li, L. O’Faolain, I. H. Rey, T. F. Krauss. Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations. Opt. Express, 19, 4458-4463(2011).

    [24] J. Matres, G. C. Ballesteros, P. Gautier, J.-M. Fédéli, J. Martí, C. J. Oton. High nonlinear figure-of-merit amorphous silicon waveguides. Opt. Express, 21, 3932-3940(2013).

    [25] B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, R. Baets. On-chip parametric amplification with 26.5  dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides. Opt. Lett., 36, 552-554(2011).

    [26] M. Pu, L. Ottaviano, E. Semenova, K. Yvind. Efficient frequency comb generation in AlGaAs-on-insulator. Optica, 3, 823-826(2016).

    [27] C. Husko, M. Wulf, S. Lefrancois, S. Combrié, G. Lehoucq, A. De Rossi, B. J. Eggleton, L. Kuipers. Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides. Nat. Commun., 7, 11332(2016).

    [28] F. Raineri, T. J. Karle, V. Roppo, P. Monnier, R. Raj. Time-domain mapping of nonlinear pulse propagation in photonic-crystal slow-light waveguides. Phys. Rev. A, 87, 041802(2013).

    [29] P. Colman, S. Combrié, G. Lehoucq, A. de Rossi, S. Trillo. Blue self-frequency shift of slow solitons and radiation locking in a line-defect waveguide. Phys. Rev. Lett., 109, 093901(2012).

    [30] S. Malaguti, G. Bellanca, S. Combrie, A. de Rossi, S. Trillo. Temporal gap solitons and all-optical control of group delay in line-defect waveguides. Phys. Rev. Lett., 109, 163902(2012).

    [31] G. P. Agrawal. Nonlinear Fiber Optics(2007).

    [32] S. Serna, N. Dubreuil. Bi-directional top-hat D-scan: single beam accurate characterization of nonlinear waveguides. Opt. Lett., 42, 3072-3075(2017).

    [33] C. Husko, S. Combrié, Q. V. Tran, F. Raineri, C. W. Wong, A. de Rossi. Non-trivial scaling of self-phase modulation and three-photon absorption in III–V photonic crystal waveguides. Opt. Express, 17, 22442-22451(2009).

    [34] F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, C. Wang. Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040  nm. J. Opt., 12, 095201(2010).

    [35] M. Sheik-Bahae, D. J. Hagan, E. W. Van Stryland. Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption. Phys. Rev. Lett., 65, 96-99(1990).

    [36] S. Grillanda, F. Morichetti. Light-induced metal-like surface of silicon photonic waveguides. Nat. Commun., 6, 8182(2015).

    [37] A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, H.-H. Lin. Nonlinear refractive-index and two photon-absorption near half the band gap in AlGaAs. Appl. Phys. Lett., 62, 2465-2467(1993).

    [38] To conform to recent literature, we use the current definition of the NL FOM, which is related by F=2/T to T=(2πn2)/(λα2)>1 the original definition.

    [39] E. Sahin, K. J. A. Ooi, G. F. R. Chen, D. K. T. Ng, C. E. Png, D. T. H. Tan. Enhanced optical nonlinearities in CMOS-compatible ultra-silicon-rich nitride photonic crystal waveguides. Appl. Phys. Lett., 111, 121104(2017).

    Aude Martin, Sylvain Combrié, Alfredo de Rossi, Grégoire Beaudoin, Isabelle Sagnes, Fabrice Raineri. Nonlinear gallium phosphide nanoscale photonics [Invited][J]. Photonics Research, 2018, 6(5): B43
    Download Citation