• Photonics Research
  • Vol. 9, Issue 4, B87 (2021)
George Sarantoglou1、3, Menelaos Skontranis1, Adonis Bogris2, and Charis Mesaritakis1、*
Author Affiliations
  • 1Department of Information and Communication Systems Engineering, University of the Aegean, Palama 2, Karlovassi 83200 Samos, Greece
  • 2Department of Informatics and Computer Engineering, University of West Attica, Aghiou Spiridonos, 12243 Egaleo, Athens, Greece
  • 3e-mail: gsarantoglou@aegean.gr
  • show less
    DOI: 10.1364/PRJ.413371 Cite this Article Set citation alerts
    George Sarantoglou, Menelaos Skontranis, Adonis Bogris, Charis Mesaritakis. Experimental study of neuromorphic node based on a multiwaveband emitting two-section quantum dot laser[J]. Photonics Research, 2021, 9(4): B87 Copy Citation Text show less
    References

    [1] P. R. Prucnal, B. J. Shastri. Neuromorphic Photonics(2017).

    [2] S. Barland, O. Piro, M. Giudici, J. R. Tredicce, S. Balle. Experimental evidence of van der Pol–Fitzhugh–Nagumo dynamics in semiconductor optical amplifiers. Phys. Rev. E, 68, 036209(2003).

    [3] M. Turconi, B. Garbin, M. Feyereisen, M. Giudici, S. Barland. Control of excitable pulses in an injection-locked semiconductor laser. Phys. Rev. E, 88, 022923(2013).

    [4] B. Garbin, D. Goulding, S. P. Hegarty, G. Huyet, B. Kelleher, S. Barland. Incoherent optical triggering of excitable pulses in an injection-locked semiconductor laser. Opt. Lett., 39, 1254-1257(2014).

    [5] H. J. Wünsche, O. Brox, M. Radziunas, F. Henneberger. Excitability of a semiconductor laser by a two-mode homoclinic bifurcation. Phys. Rev. Lett., 88, 023901(2001).

    [6] F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, S. Barbay. Relative refractory period in an excitable semiconductor laser. Phys. Rev. Lett., 112, 183902(2014).

    [7] M. A. Nahmias, B. J. Shastri, A. N. Tait, P. R. Prucnal. A leaky integrate-and-fire laser neuron for ultrafast cognitive computing. IEEE J. Sel. Top. Quantum Electron., 19, 1800212(2013).

    [8] F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, S. Barbay. Temporal summation in a neuromimetic micropillar laser. Opt. Lett., 40, 5690-5693(2015).

    [9] K. Alexander, T. Van Vaerenbergh, M. Fiers, P. Mechet, J. Dambre, P. Bienstman. Excitability in optically injected microdisk lasers with phase controlled excitatory and inhibitory response. Opt. Express, 21, 26182-26191(2013).

    [10] A. M. Yacomotti, P. Monnier, F. Raineri, B. B. Bakir, C. Seassal, R. Raj, J. A. Levenson. Fast thermo-optical excitability in a two-dimensional photonic crystal. Phys. Rev. Lett., 97, 143904(2006).

    [11] A. Hurtado, J. Javaloyes. Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems. Appl. Phys. Lett., 107, 241103(2015).

    [12] W. W. Chow, F. Jahnke. On the physics of semiconductor quantum dots for applications in lasers and quantum optics. Prog. Quantum Electron., 37, 109-184(2013).

    [13] S. S. Mikhrin, A. R. Kovsh, I. L. Krestnikov, A. V. Kozhukhov, D. A. Livshits, N. N. Ledentsov, Y. M. Shernyakov, I. I. Novikov, M. V. Maximov, V. M. Ustinov. High power temperature-insensitive 1.3  μm InAs/InGaAs/GaAs quantum dot lasers. Semicond. Sci. Technol., 20, 340-342(2005).

    [14] J. K. Mee, M. T. Crowley, N. Patel, D. Murrell, R. Raghunathan, A. Aboketaf, A. Elshaari, S. F. Preble, P. Ampadu, L. F. Lester. A passively mode-locked quantum-dot laser operating over a broad temperature range. Appl. Phys. Lett., 101, 071112(2012).

    [15] S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photonics, 10, 307-311(2016).

    [16] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).

    [17] D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, G. Huyet. Excitability in a quantum dot semiconductor laser with optical injection. Phys. Rev. Lett., 98, 153903(2007).

    [18] M. Dillane, J. Robertson, M. Peters, A. Hurtado, B. Kelleher. Neuromorphic dynamics with optically injected quantum dot lasers. Eur. Phys. J. B, 92, 197(2019).

    [19] G. Sarantoglou, M. Skontranis, C. Mesaritakis. All optical integrate and fire neuromorphic node based on single section quantum dot laser. IEEE J. Sel. Top. Quantum Electron., 26, 1900310(2020).

    [20] C. Mesaritakis, A. Kapsalis, A. Bogris, D. Syvridis. Artificial neuron based on integrated semiconductor quantum dot mode-locked lasers. Sci. Rep., 6, 39317(2016).

    [21] E. M. Izhikevich. Dynamical Systems in Neuroscience(2007).

    [22] R. FitzHugh. Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophys., 17, 257-278(1955).

    [23] M. Krupa, P. Szmolyan. Relaxation oscillation and canard explosion. J. Differ. Equ., 174, 312-368(2001).

    [24] F. Marino, G. Catalán, P. Sánchez, S. Balle, O. Piro. Thermo-optical ‘canard orbits’ and excitable limit cycles. Phys. Rev. Lett., 92, 073901(2004).

    [25] E. M. Izhikevich. Resonate-and-fire neurons. Neural Netw., 14, 883-894(2001).

    [26] A. Dolcemascolo, B. Garbin, B. Peyce, R. Veltz, S. Barland. Resonator neuron and triggering multipulse excitability in laser with injected signal. Phys. Rev. E, 98, 062211(2018).

    [27] C. Mesaritakis, M. Skontranis, G. Sarantoglou, A. Bogris. Micro-ring-resonator based passive photonic spike-time-dependent-plasticity scheme for unsupervised learning in optical neural networks. Optical Fiber Communications Conference and Exhibition (OFC), 1-3(2020).

    [28] S. Thorpe, A. Delorme, R. Van Rullen. Spike-based strategies for rapid processing. Neural Netw., 14, 715-725(2001).

    [29] J. L. Dubbeldam, B. Krauskopf. Self-pulsations of lasers with saturable absorber: dynamics and bifurcations. Opt. Commun., 159, 325-338(1999).

    [30] J. L. Dubbeldam, B. Krauskopf, D. Lenstra. Excitability and coherence resonance in lasers with saturable absorber. Phys. Rev. E, 60, 6580-6588(1999).

    [31] A. Röhm. Dynamic Scenarios in Two-State Quantum Dot Lasers: Excited State Lasing, Ground State Quenching, and Dual-Mode Operation(2015).

    [32] M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, Y. Arakawa. Photon lifetime dependence of modulation efficiency and K factor in 1.3  μm self-assembled InAs/GaAs quantum-dot lasers: impact of capture time and maximum modal gain on modulation bandwidth. Appl. Phys. Lett., 85, 4145-4147(2004).

    [33] C. Mesaritakis, C. Simos, H. Simos, A. Kapsalis, E. Roditi, I. Krestnikov, D. Syvridis. Effect of the number of quantum dot layers and dual state emission on the performance of InAs/InGaAs passively mode-locked lasers. Appl. Phys. Lett., 101, 251115(2012).

    [34] M. Gioannini. Ground-state power quenching in two-state lasing quantum dot lasers. J. Appl. Phys., 111, 043108(2012).

    [35] C. Mesaritakis, C. Simos, H. Simos, I. Krestnikov, D. Syvridis. Dual ground-state pulse generation from a passively mode-locked InAs/InGaAs quantum dot laser. Appl. Phys. Lett., 99, 141109(2011).

    [36] M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, Y. Nakata. Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection. J. Appl. Phys., 97, 043523(2005).

    [37] A. Tierno, N. Radwell, T. Ackemann. Low-frequency self-pulsing in single-section quantum-dot laser diodes and its relation to optothermal pulsations. Phys. Rev. A, 84, 043828(2011).

    [38] E. A. Viktorov, T. Erneux, B. Tykalewicz, D. Goulding, S. P. Hegarty, G. Huyet, B. Kelleher. Optothermal excitabilities and instabilities in quantum dot lasers. Proc. SPIE, 9357, 935704(2015).

    [39] E. A. Viktorov, T. Erneux. Self-sustained pulsations in a quantum-dot laser. Phys. Rev. E, 90, 052914(2014).

    [40] E. A. Viktorov, M. A. Cataluna, L. O’Faolain, T. F. Krauss, W. Sibbett, E. U. Rafailov, P. Mandel. Dynamics of a two-state quantum dot laser with saturable absorber. Appl. Phys. Lett., 90, 121113(2007).

    [41] S. H. Strogatz. Nonlinear Dynamics and Chaos with Student Solutions Manual: With Applications to Physics, Biology, Chemistry, and Engineering(2018).

    [42] T. Erneux, P. Glorieux. Laser Dynamics(2010).

    [43] A. G. Vladimirov, U. Bandelow, G. Fiol, D. Arsenijević, M. Kleinert, D. Bimberg, A. Pimenov, D. Rachinskii. Dynamical regimes in a monolithic passively mode-locked quantum dot laser. J. Opt. Soc. Am. B, 27, 2102-2109(2010).

    [44] D. B. Malins, A. Gomez-Iglesias, S. J. White, W. Sibbett, A. Miller, E. U. Rafailov. Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm. Appl. Phys. Lett., 89, 171111(2006).

    [45] G. Kozyreff, T. Erneux. Singular Hopf bifurcation to strongly pulsating oscillations in lasers containing a saturable absorber. Eur. J. Appl. Math., 14, 407-420(2003).

    [46] S. Breuer, M. Rossetti, L. Drzewietzki, P. Bardella, I. Montrosset, W. Elsasser. Joint experimental and theoretical investigations of two-state mode locking in a strongly chirped reverse-biased monolithic quantum dot laser. IEEE J. Quantum Electron., 47, 1320-1329(2011).

    [47] C. Mesaritakis, C. Simos, H. Simos, A. Kapsalis, I. Krestnikov, D. Syvridis. External optical feedback-induced wavelength selection and Q-switching elimination in an InAs/InGaAs passively mode-locked quantum dot laser. J. Opt. Soc. Am. B, 29, 1071-1077(2012).

    [48] G. Sarantoglou, M. Skontranis, A. Bogris, C. Mesaritakis. Temporal resolution enhancement in quantum-dot laser neurons due to ground state quenching effects. Optical Fiber Communication Conference, M2K-1(2020).

    [49] G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, U. Keller. Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers. J. Opt. Soc. Am. B, 16, 376-388(1999).

    [50] D. G. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, S. Freisem. Quantum dot laser diode with low threshold and low internal loss. Electron. Lett., 45, 54-56(2009).

    [51] O. Qasaimeh, W.-D. Zhou, J. Phillips, S. Krishna, P. Bhattacharya, M. Dutta. Bistability and self-pulsation in quantum-dot lasers with intracavity quantum-dot saturable absorbers. Appl. Phys. Lett., 74, 1654-1656(1999).

    CLP Journals

    [1] Li Gao, Yang Chai, Darko Zibar, Zongfu Yu. Deep learning in photonics: introduction[J]. Photonics Research, 2021, 9(8): DLP1

    [2] Jinlong Xiang, Yujia Zhang, Yaotian Zhao, Xuhan Guo, Yikai Su. All-optical silicon microring spiking neuron[J]. Photonics Research, 2022, 10(4): 939

    George Sarantoglou, Menelaos Skontranis, Adonis Bogris, Charis Mesaritakis. Experimental study of neuromorphic node based on a multiwaveband emitting two-section quantum dot laser[J]. Photonics Research, 2021, 9(4): B87
    Download Citation