• Opto-Electronic Engineering
  • Vol. 50, Issue 8, 230173 (2023)
Yizhen Chen1, Weikang Pan1, Xiangyu Jin1, Qiong He2, Lei Zhou2, and Shulin Sun1、*
Author Affiliations
  • 1Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China
  • 2State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
  • show less
    DOI: 10.12086/oee.2023.230173 Cite this Article
    Yizhen Chen, Weikang Pan, Xiangyu Jin, Qiong He, Lei Zhou, Shulin Sun. Far-field radiation manipulations of on-chip optical near-fields[J]. Opto-Electronic Engineering, 2023, 50(8): 230173 Copy Citation Text show less
    References

    [1] A H Atabaki, S Moazeni, F Pavanello et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature, 556, 349-354(2018).

    [2] W L Barnes, A Dereux, T W Ebbesen. Surface Plasmon subwavelength optics. Nature, 424, 824-830(2003).

    [3] J B Pendry, A J Holden, W J Stewart et al. Extremely low frequency Plasmons in metallic Mesostructures. Phys Rev Lett, 76, 4773-4776(1996).

    [4] J J Shi, Y Li, M Kang et al. Efficient second harmonic generation in a hybrid plasmonic waveguide by mode interactions. Nano Lett, 19, 3838-3845(2019).

    [5] J N Anker, W P Hall, O Lyandres et al. Biosensing with plasmonic nanosensors. Nat Mater, 7, 442-453(2008).

    [6] X Zhang, Z W Liu. Superlenses to overcome the diffraction limit. Nat Mater, 7, 435-441(2008).

    [7] Y Q Zhang, C J Min, X J Dou et al. Plasmonic tweezers: for nanoscale optical trapping and beyond. Light Sci Appl, 10, 59(2021).

    [8] J Chen, T Li, S M Wang et al. Multiplexed holograms by surface Plasmon propagation and polarized scattering. Nano Lett, 17, 5051-5055(2017).

    [9] J Sun, E Timurdogan, A Yaacobi et al. Large-scale nanophotonic phased array. Nature, 493, 195-199(2013).

    [10] D R Jackson, C Caloz, T Itoh. Leaky-wave antennas. Proc IEEE, 100, 2194-2206(2012).

    [11] F Monticone, A Alù. Leaky-wave theory, techniques, and applications: from microwaves to visible frequencies. Proc IEEE, 103, 793-821(2015).

    [12] N F Yu, P Genevet, M A Kats et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [13] S L Sun, Q He, J M Hao et al. Electromagnetic metasurfaces: physics and applications. Adv Opt Photonics, 11, 380(2019).

    [14] Y Meng, Y Z Chen, L H Lu et al. Optical meta-waveguides for integrated photonics and beyond. Light Sci Appl, 10, 235(2021).

    [15] F X Guan, S L Sun, S Y Xiao et al. Scatterings from surface Plasmons to propagating waves at Plasmonic discontinuities. Sci Bull, 64, 802-807(2019).

    [16] F X Guan, S L Sun, S J Ma et al. Transmission/reflection behaviors of surface Plasmons at an interface between two Plasmonic systems. J Phys Condens Matter, 30, 114002(2018).

    [17] F X Guan, S H Dong, Q He et al. Scatterings and wavefront manipulations of surface Plasmon polaritons. Acta Phys Sin, 69, 157804(2020).

    [18] W K Pan, Z Wang, Y Z Chen et al. High-efficiency generation of far-field spin-polarized wavefronts via designer surface wave metasurfaces. Nanophotonics, 11, 2025-2036(2022).

    [19] H J Lezec, A Degiron, E Devaux et al. Beaming light from a subwavelength aperture. Science, 297, 820-822(2002).

    [20] N F Yu, J Fan, Q J Wang et al. Small-divergence semiconductor lasers by plasmonic collimation. Nat Photonics, 2, 564-570(2008).

    [21] Y C Jun, K C Y Huang, M L Brongersma. Plasmonic beaming and active control over fluorescent emission. Nat Commun, 2, 283(2011).

    [22] L Martín-Moreno, F J García-Vidal, H J Lezec et al. Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations. Phys Rev Lett, 90, 167401(2003).

    [23] S Kim, Y Lim, H Kim et al. Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings. Appl Phys Lett, 92, 013103(2008).

    [24] X M Tang, L Li, T Li et al. Converting surface Plasmon to spatial Airy beam by graded grating on metal surface. Opt Lett, 38, 1733-1735(2013).

    [25] F H Hao, R Wang, J Wang. Design and characterization of a micron-focusing plasmonic device. Opt Express, 18, 15741-15746(2010).

    [26] C Y Guan, M Ding, J H Shi et al. Compact all-fiber plasmonic Airy-like beam generator. Opt Lett, 39, 1113-1116(2014).

    [27] H F Shi, C L Du, X G Luo. Focal length modulation based on a metallic slit surrounded with grooves in curved depths. Appl Phys Lett, 91, 093111(2007).

    [28] M S Kumar, X Piao, S Koo et al. Out of plane mode conversion and manipulation of Surface Plasmon Polariton waves. Opt Express, 18, 8800-8805(2010).

    [29] S L Sun, Q He, S Y Xiao et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater, 11, 426-431(2012).

    [30] J J Xu, H C Zhang, Q Zhang et al. Efficient conversion of surface-Plasmon-like modes to spatial radiated modes. Appl Phys Lett, 106, 021102(2015).

    [31] A Kianinejad, Z N Chen, C W Qiu. A single-layered spoof-Plasmon-mode leaky wave antenna with consistent gain. IEEE Trans Antennas Propag, 65, 681-687(2017).

    [32] D P Wang, G M Wang, T Cai et al. Planar spoof surface Plasmon Polariton antenna by using transmissive phase gradient metasurface. Ann Phys, 532, 2000008(2020).

    [33] H Zhu, X Yin, L Chen et al. Directional beaming of light from a subwavelength metal slit with phase-gradient metasurfaces. Sci Rep, 7, 12098(2017).

    [34] X X Guo, Y M Ding, X Chen et al. Molding free-space light with guided wave–driven metasurfaces. Sci Adv, 6, eabb4142(2020).

    [35] T Li, J Chen, S N Zhu. Manipulating surface Plasmon propagation: from beam modulation to near-field holography. Laser Optoelectron Prog, 54, 050002(2017).

    [36] M Li, M Hagberg, J Bengtsson et al. Optical waveguide fan-out elements using dislocated gratings for both outcoupling and phase shifting. IEEE Photonics Technol Lett, 8, 1199-1201(1996).

    [37] Y H Chen, L Huang, L Gan et al. Wavefront shaping of infrared light through a subwavelength hole. Light Sci Appl, 1, e26(2012).

    [38] Y H Chen, J X Fu, Z Y Li. Surface wave holography on designing subwavelength metallic structures. Opt Express, 19, 23908-23920(2011).

    [39] Z Q Huang, D L Marks, D R Smith. Out-of-plane computer-generated multicolor waveguide holography. Optica, 6, 119-124(2019).

    [40] S Zheng, Z Y Zhao, W F Zhang. Versatile generation and manipulation of phase-structured light beams using on-chip subwavelength holographic surface gratings. Nanophotonics, 12, 55-70(2023).

    [41] I Dolev, I Epstein, A Arie. Surface-Plasmon holographic beam shaping. Phys Rev Lett, 109, 203903(2012).

    [42] Y M Ding, X Chen, Y Duan et al. Metasurface-dressed two-dimensional on-chip waveguide for free-space light field manipulation. ACS Photonics, 9, 398-404(2022).

    [43] B Fang, Z Z Wang, S L Gao et al. Manipulating guided wave radiation with integrated geometric metasurface. Nanophotonics, 11, 1923-1930(2022).

    [44] K L Xi, B Fang, L Ding et al. Terahertz airy beam generated by Pancharatnam-Berry phases in guided wave-driven metasurfaces. Opt Express, 30, 16699-16711(2022).

    [45] Z Bomzon, G Biener, V Kleiner et al. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt Lett, 27, 1141-1143(2002).

    [46] W L Guo, G M Wang, H S Hou et al. Multi-functional coding metasurface for dual-band independent electromagnetic wave control. Opt Express, 27, 19196-19211(2019).

    [47] S Q Chen, W W Liu, Z C Li et al. Metasurface‐empowered optical multiplexing and multifunction. Adv Mater, 32, 1805912(2020).

    [48] L Zhang, R Y Wu, G D Bai et al. Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves. Adv Funct Mater, 28, 1802205(2018).

    [49] P C Wu, W M Zhu, Z X Shen et al. Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface. Adv Opt Mater, 5, 1600938(2017).

    [50] C Spägele, M Tamagnone, D Kazakov et al. Multifunctional wide-angle optics and lasing based on supercell metasurfaces. Nat Commun, 12, 3787(2021).

    [51] N Zhou, S Zheng, X P Cao et al. Ultra-compact broadband polarization diversity orbital angular momentum generator with 3.6 × 3.6 μm2 footprint. Sci Adv, 5, eaau9593(2019).

    [52] Y L Ha, Y H Guo, M B Pu et al. Monolithic-integrated multiplexed devices based on metasurface-driven guided waves. Adv Theory Simul, 4, 2000239(2021).

    [53] Y L Ha, Y H Guo, M B Pu et al. Minimized two- and four-step varifocal lens based on silicon photonic integrated nanoapertures. Opt Express, 28, 7943-7952(2020).

    [54] R Yang, Q Q Yu, Y W Pan et al. Directional-multiplexing holography by on-chip metasurface. Opto-Electron Eng, 49, 220177(2022).

    [55] Y Liu, Y Y Shi, Z J Wang et al. On-chip integrated metasystem with inverse-design wavelength Demultiplexing for augmented reality. ACS Photonics, 10, 1268-1274(2023).

    [56] B Fang, F Z Shu, Z Z Wang et al. On-chip non-uniform geometric metasurface for multi-channel wavefront manipulations. Opt Lett, 48, 3119-3122(2023).

    [57] Y Y Shi, C W Wan, C J Dai et al. Augmented reality enabled by on-chip meta-holography multiplexing. Laser Photonics Rev, 16, 2100638(2022).

    [58] R Yang, S Wan, Y Y Shi et al. Immersive tuning the guided waves for multifunctional on-chip metaoptics. Laser Photonics Rev, 16, 2200127(2022).

    [59] Y Y Shi, C W Wan, C J Dai et al. On-chip meta-optics for semi-transparent screen display in sync with AR projection. Optica, 9, 670-676(2022).

    [60] C L Zhang, C J Min, L P Du et al. Perfect optical vortex enhanced surface Plasmon excitation for plasmonic structured illumination microscopy imaging. Appl Phys Lett, 108, 201601(2016).

    [61] R Dorn, S Quabis, G Leuchs. Sharper focus for a radially polarized light beam. Phys Rev Lett, 91, 233901(2003).

    [62] V D’Ambrosio, E Nagali, S P Walborn et al. Complete experimental toolbox for alignment-free quantum communication. Nat Commun, 3, 961(2012).

    [63] V Parigi, V D’Ambrosio, C Arnold et al. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory. Nat Commun, 6, 7706(2015).

    [64] L Li, T Li, X M Tang et al. Plasmonic polarization generator in well-routed beaming. Light Sci Appl, 4, e330(2015).

    [65] J T Ji, Z Z Wang, J C Sun et al. Metasurface-enabled on-chip manipulation of higher-order Poincaré sphere beams. Nano Lett, 23, 2750-2757(2023).

    [66] Y B Zhang, Z C Li, W W Liu et al. On-chip multidimensional manipulation of far-field radiation with guided wave-driven metasurfaces. Laser Photonics Rev, 17, 2300109(2023).

    [67] H Q Huang, A C Overvig, Y Xu et al. Leaky-wave metasurfaces for integrated photonics. Nat Nanotechnol, 18, 580-588(2023).

    [68] G Y Xu, A Overvig, Y Kasahara et al. Arbitrary aperture synthesis with nonlocal leaky-wave metasurface antennas. Nat Commun, 14, 4380(2023).

    [69] X G Luo, T Ishihara. Surface Plasmon resonant interference nanolithography technique. Appl Phys Lett, 84, 4780-4782(2004).

    [70] Y H Guo, M B Pu, Z Y Zhao et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photonics, 3, 2022-2029(2016).

    [71] Y H Guo, M B Pu, X Li et al. Chip-integrated geometric metasurface as a novel platform for directional coupling and polarization sorting by spin-orbit interaction. IEEE J Sel Top Quantum Electron, 24, 4700107(2018).

    [72] W K Pan, Z Wang, Y Z Chen et al. Efficiently controlling near-field wavefronts via designer metasurfaces. ACS Photonics, 10, 2423-2431(2023).

    Yizhen Chen, Weikang Pan, Xiangyu Jin, Qiong He, Lei Zhou, Shulin Sun. Far-field radiation manipulations of on-chip optical near-fields[J]. Opto-Electronic Engineering, 2023, 50(8): 230173
    Download Citation