Daisy Williams, Xiaoyi Bao, and Liang Chen, "Characterization of high nonlinearity in Brillouin amplification in optical fibers with applications in fiber sensing and photonic logic," Photonics Res. 2, 1 (2014)

Search by keywords or author
- Photonics Research
- Vol. 2, Issue 1, 1 (2014)

Fig. 1. (a) Schematic arrangement of SBS in a fiber of length L . Pump and probe configuration: A 1 ( z ) —continuous wave, A 2 ( z ) —probe wave. (b) Schematic distribution of the pump and probe intensities during SBS.

Fig. 2. Relative error of linear approximation of 3D parametric model of output CW. L = 1000 m , 0 < P pump < 10 mW , 0 < P probe < 40 mW .

Fig. 3. Relative error of quadratic approximation of 3D parametric model of output CW. L = 1000 m , 0 < P pump < 10 mW , 0 < P probe < 40 mW .

Fig. 4. Linear approximation of 3D parametric model of output CW. Dimensionless output intensity of the CW versus dimensionless parameters β 1 and β 3 . γ e = 0.902 , v = 5616 m / s , n = 1.48 , λ = 1.319 μm , ρ 0 = 2.21 g / cm 3 , Γ B = 0.1 GHz L = 1000 m , 0 < P pump < 10 mW , 0 < P probe < 40 mW .

Fig. 5. Linear approximation of 3D parametric model of output PW. Dimensionless output intensity of the PW versus dimensionless parameters β 1 and β 3 . γ e = 0.902 , v = 5616 m / s , n = 1.48 , λ = 1.319 μm , ρ 0 = 2.21 g / cm 3 , Γ B = 0.1 GHz L = 1000 m , 0 < P pump < 10 mW , 0 < P probe < 40 mW .

Fig. 6. Analytical results, normalized intensity units. P PW (mW) = ○ 0.01; ▵ 1.8; × 6.6; ◻ 12.1; ▿ 17.1; + 22.4; * 27.2; --- 31.8; ─ 36.3. n = 1.48 , γ e = 0.902 , λ = 1319 nm , ρ 0 = 2.21 g / cm 3 , v = 5616 m / s , L = 1000 m , Γ B = 0.1 GHz , P CW = 1.0 mW .

Fig. 7. Pump depletion as a function of probe spectral distortion. P PW (mW) = ○ 0.01; ▵ 1.8; × 6.6; ◻ 12.1; ▿ 17.1; + 22.4; * 27.2; ▪ 31.8; ♦ 36.3. n = 1.48 , γ e = 0.902 , λ = 1319 nm , ρ 0 = 2.21 g / cm 3 , v = 5616 m / s , L = 1000 m , Γ B = 0.1 GHz , P CW = 1.0 mW .

Fig. 8. Shaded area depicts range of β 1 and β 3 values that yield curvatures within 20% of the Lorentz curvature for both CW and PW spectra.

Fig. 9. Experimental setup.

Fig. 10. Experimental results, normalized intensity units. P PW (mW) = ○ 0.01; ▵ 1.8; × 6.6; ◻ 12.1; ▿ 17.1; + 22.4; * 27.2; --- 31.8; ─ 36.3. n = 1.48 , γ e = 0.902 , λ = 1319 nm , ρ 0 = 2.21 g / cm 3 , v = 5616 m / s , L = 1000 m , Γ B = 0.1 GHz , P CW = 1.0 mW .

Set citation alerts for the article
Please enter your email address