• Frontiers of Optoelectronics
  • Vol. 12, Issue 4, 392 (2019)
Yue WANG1, Jiaxin ZHAO1, Qifeng ZHU1, Jianping SHEN1, Zhongyue WANG1, Haitao GUO2, and Chunxiao LIU1、*
Author Affiliations
  • 1College of Electronic and Optical Engineering, Nanjing University of Post and Telecommunications, Nanjing 210023, China
  • 2State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences (CAS),Xi’an 710119, China
  • show less
    DOI: 10.1007/s12200-019-0869-6 Cite this Article
    Yue WANG, Jiaxin ZHAO, Qifeng ZHU, Jianping SHEN, Zhongyue WANG, Haitao GUO, Chunxiao LIU. Near-infrared carbon-implanted waveguides in Tb3+-doped aluminum borosilicate glasses[J]. Frontiers of Optoelectronics, 2019, 12(4): 392 Copy Citation Text show less

    Abstract

    Ion implantation has played a unique role in the fabrication of optical waveguide devices. Tb3+-doped aluminum borosilicate (TDAB) glass has been considered as an important magneto-optical material. In this work, near-infrared waveguides have been manufactured by the (5.5 + 6.0) MeV C3+ ion implantation with doses of (4.0 + 8.0) × 1013 ions$cm-2 in the TDAB glass. The modes propagated in the TDAB glass waveguide were recorded by a prism-coupling system. The finite-difference beam propagation method (FD-BPM) was carried out to simulate the guiding characteristics of the TDAB glass waveguide. The TDAB glass waveguide allows the light propagation with a single-mode at 1.539 mm and can serve as a potential candidate for future waveguide isolators.
    Yue WANG, Jiaxin ZHAO, Qifeng ZHU, Jianping SHEN, Zhongyue WANG, Haitao GUO, Chunxiao LIU. Near-infrared carbon-implanted waveguides in Tb3+-doped aluminum borosilicate glasses[J]. Frontiers of Optoelectronics, 2019, 12(4): 392
    Download Citation