• Microelectronics
  • Vol. 54, Issue 2, 243 (2024)
WANG Qi, HUANG Xiaozong, and LIAO Wang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.13911/j.cnki.1004-3365.240116 Cite this Article
    WANG Qi, HUANG Xiaozong, LIAO Wang. Development Status and Trend of Digital Temperature Sensors Based on BJT Characteristics[J]. Microelectronics, 2024, 54(2): 243 Copy Citation Text show less
    References

    [1] Mordor Intelligence [EB/OL ]. https://www.mordorintelligence.com/zh-CN/.

    [2] BAKKER A, HUIJING J H. High-accuracy CMOS smart temperature sensors [M]. Berlin: Springer Science & Business Media, 2000.

    [3] MAKINWA K A A. Smart temperature sensor survey[EB/OL]. http://ei.ewi.tudelft.nl/docs/TSensor_survey.xls.

    [4] HILBIBER D F. A new semiconductor voltage standard [C] // IEEE International Solid-State Circuits Conference. Digest of Technical Papers.Philadelphia, PA, USA. 1964: 32-33.

    [5] VERSTER T C. p-n Junction as an ultralinear calculable thermometer [J]. Electronics Letters,1968, 4(9): 175-176.

    [6] DOBKIN R. Monolithic temperature transducer [C]// IEEE International Solid-State Circuits Conference.Digest of Technical Papers. Philadelphia, PA, USA.1974: 126-127.

    [7] VITTOZ E A. MOS transistors operated in the lateral bipolar mode and their application in CMOS technology[J]. IEEE Journal of Solid-State Circuits, 1983, 18(3): 273-279.

    [8] KRUMMENACHER P, OGUEY H. Smart temperature sensor in CMOS technology [J]. Sensors and Actuators A: Physical, 1990, 22(1-3): 636-638.

    [9] BAKKER A, HUIJSING J H. Micropower CMOS temperature sensor with digital output [J]. IEEE Journal of Solid-State Circuits, 1996, 31(7): 933-937.

    [10] PERTIJS M A P, MAKINWA K A A, HUIJSING J H. A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.1 ℃ From -55 ℃ to 125℃ [J].IEEE Journal of Solid-State Circuits, 2005, 40(12):2805-2815.

    [11] MEIJER G C M., GELDER R V, NOODER V, et al.A three-terminal intergrated temperature transducer with microcomputer interfacing [J]. Sensors and Actuators, 1989, 18(2): 195-206.

    [12] SOURI K, CHAE Y, MAKINWA K A A. A CMOS Temperature Sensor With a Voltage-Calibrated Inaccuracy of ±0.15 ℃(3σ) From -55 ℃ to 125 ℃[J]. IEEE Journal of Solid-State Circuits, 2012, 48(1): 292-301.

    [13] WANG B, LAW M K, BERMAKA. A BJT-based CMOS temperature sensor achieving an inaccuracy of ±0.45 ℃ (3σ) from -50 ℃ to 180 ℃ and a resolution-FoM of 7.2 pJ·K2 at 150 ℃ [C] // IEEE International Solid-State Circuits Conference(ISSCC).San Francisco, CA, USA. 2022: 72-74.

    [14] PERTIJS M A P, BAKKER A, HUIJSING J H. A high-accuracy temperature sensor with second-order curvature correction and digital bus interface [C] //IEEE International Symposium on Circuits and Systems (Cat. No. 01CH37196). Sydney, NSW,Australia. 2001: 368-371.

    [15] PERTIJS M A P, HUIJSING J H. Transistor temperature measurement for calibration of integrated temperature sensors [C] // Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference (Cat. No. 00CH37276). Anchorage, AK,USA. 2002: 755-758.

    [16] PERTIJS M A P, HUIJSING J H. Precision temperature sensors in CMOS technology [M].Berlin: Springer Science & Business Media, 2006.

    [17] YOUSEFZADEH B, MAKINWA K A A. A BJTbased temperature sensor with a packaging-robust inaccuracy of ±0.3 ℃ (3σ) from -55 ℃ to +125 ℃ after heater-assisted voltage calibration [C] // IEEE International Solid-State Circuits Conference(ISSCC).San Francisco, CA, USA. 2017: 162-163.

    [18] SOURI K, SOURI K, MAKINWA K A A.. A 40μW CMOS temperature sensor with an inaccuracy of ±0.4℃ (3σ) from -55 ℃ to 200 ℃ [C] //Proceedings of the ESSCIRC. Bucharest, Romania.2013: 221-224.

    [19] YOUSEFZADEH B, MAKINWA K A A. A BJTbased temperature-to-digital converter with a ±0.25℃ 3σ-inaccuracy from -40 ℃ to +180℃ using heater-assisted voltage calibration [J]. IEEE Journal of Solid-State Circuits, 2020, 55(2): 369-377.

    [20] LI Y W, LAKDAWALA H., RAYCHOWDHURY A, et al. A 1.05 V 1.6 mW 0.45 ℃ 3σ-resolution ΔΣ-based temperature sensor with parasitic-resistance compensation in 32 nm CMOS [C] // IEEE International Solid-State Circuits Conference-Digest of Technical Papers. San Francisco, CA, USA. 2009:340-341, 341a.

    [21] SHOR J, LURIA K, ZILBERMAN D. Ratio metric BJT-based thermal sensor in 32 nm and 22 nm technologies [C] // IEEE International Solid-State Circuits Conference. San Francisco, CA, USA. 2012:210-212.

    [22] CHUANG M C, TAI C L, HSU Y C, et al. A temperature sensor with a 3σ inaccuracy of ±2 ℃ without trimming from -50 ℃ to 150 ℃ in a 16nm FinFET process [C] //41st European Solid-State Circuits Conference(ESSCIRC). Graz, Austria. 2015:271-274.

    [23] EBERLEIN M, YAHAV I. A 28 nm CMOS ultracompact thermal sensor in current-mode technique [C]// 2016 IEEE Symposium on VLSI Circuits.Honolulu, HI, USA. 2016: 1-2.

    [24] EBERLEIN M, PRETL H. A Current-Mode Temperature Sensor with a ±1.56℃ Raw Error and Duty-Cycle Output in 16nm FinFET [C] // 2021 IEEE International Symposium on Circuits and Systems (ISCAS). Daegu, Korea. 2021: 1-5.

    [25] SEBASTIANO F, BREEMS L J., MAKINWA K A A, et al. A 1.2 V 10 μW NPN-based temperature sensor in 65 nm CMOS with an inaccuracy of ±0.2 ℃(3σ) from -70 ℃ to 125 ℃ [J]. IEEE Journal of Solid-State Circuits, 45(12): 2591-2601.

    [26] OSHITA T, SHOR J, DUARTE D, et al. Compact BJT-based thermal sensor for processor applications in a 14 nm tri-gate CMOS process [J]. IEEE Journal of Solid-State Circuits, 2015, 50(3): 799-807.

    [27] YOUSEFZADEH B, SHALMANY S H, MAKINWA K A A. A BJT-based temperature-to-digital converter with ±60 mK(3σ) inaccuracy from -55 ℃ to + 125℃ in 0.16 μm CMOS [J]. IEEE Journal of Solid-State Circuits, 2017, 52(4): 1044-1052.

    [28] LIN D S, HONG H P. A 0.5 V BJT-based CMOS thermal sensor in 10-nm FinFET technology [C] //IEEE Asian Solid-State Circuits Conference (ASSCC).Seoul, South Korea. 2017: 41-44.

    [29] TANG Z, FANG Y, YU X P, et al. An energyefficient capacitively biased diode-based temperature sensor in 55 nm CMOS [J]. IEEE Solid-State Circuits Letters, 2021, 4: 210-213.

    [30] TANG Z, PAN S, MAKINWA K A A. A sub-1 V 810 nW capacitively-based BJT-Based Temperature Sensor with an Inaccuracy of ±0.15 ℃ (3σ) from -55 ℃ to 125 ℃ [J]. IEEE Journal of Solid-State Circuits, 58(12): 3433-3441.

    [31] SOURI K, MAKINWA K A A. A 0.12 mm2 7.4 μW micropower temperature sensor with an inaccuracy of ±0.2 ℃ (3σ) from -30 ℃ to 125 ℃ [J]. IEEE Journal of Solid-State Circuits, 2011, 46(7): 1693-1700.

    [32] SOMEYA T, HOEK V V, ANGEVARE J, et al. A 210 nW BJT-based Temperature Sensor with an Inaccuracy of ±0.15℃ (3σ) from -15 ℃ to 85 ℃ [C] // IEEE Symposium on VLSI Technology and Circuits. Honolulu, HI, USA. 2022: 120-121.

    [33] LU C Y, RAVIKUMAR S, SALI A D, et al. An 8b subthreshold hybrid thermal sensor with ±1.07 ℃ inaccuracy and single-element remote-sensing technique in 22 nm FinFET [C] // IEEE International Solid-State Circuits Conference. San Francisco, CA, USA.2018: 318-320.

    [34] LI Y, DUARTE D, FAN Y P. A 90.9 kS/s, 0.7 nJ/conversion Hybrid Temperature Sensor in 4nm-class CMOS [C] // IEEE Symposium on VLSI Technology and Circuits. Honolulu, HI, USA. 2022: 118-119.