• Journal of Infrared and Millimeter Waves
  • Vol. 38, Issue 2, 195 (2019)
LI Kun1、*, YANG Su-Hui1、2, WANG Xin1, LI Zhuo1, and ZHANG Jin-Ying1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2019.02.012 Cite this Article
    LI Kun, YANG Su-Hui, WANG Xin, LI Zhuo, ZHANG Jin-Ying. Tunable Mid-IR dual frequency laser based on a single-resonant optical parametric oscillator[J]. Journal of Infrared and Millimeter Waves, 2019, 38(2): 195 Copy Citation Text show less
    References

    [1] Vainio M, Peltola J, Persijn S, et al. Singly resonant cw OPO with simple wavelength tuning[J]. Optics Express, 2008, 16(15):11141-11146.

    [2] Groot M L, Wilderen L J G W V, Larsen D S, et al. Initial steps of signal generation in photoactive yellow protein revealed with femtosecond mid-infrared spectroscopy.[J]. Biochemistry, 2003, 42(34):10054-10059.

    [6] Orphal J, Bergametti G, Beghin B, et al. Monitoring tropospheric pollution using infrared spectroscopy from geostationary orbit[J]. Comptes Rendus Physique, 2005, 6(8):888-896.

    [7] Vercesi V, Onori D, Laghezza F, et al. Frequency-agile dual-frequency lidar for integrated coherent radar-lidar architectures[J]. Optics Letters, 2015, 40(7):1358-61.

    [8] Eberhard W L, Schotland R M . Dual-frequency Doppler-lidar method of wind measurement[J]. Applied Optics, 1980, 19(17):2967.

    [9] Liu J M, Diaz R, Chan S C. Lidar detection using a dual-frequency source[J]. Optics Letters, 2006, 31(24):3600-3602.

    [10] Koch S E, Flamant C, Wilson J W, et al. An atmospheric soliton observed with doppler radar, differential absorption lidar and a molecular Doppler lidar[J]. Journal of Atmospheric & Oceanic Technology, 2008, 25(8):1267-1287.

    [12] Ramos J A, Osorio M, Belsterli G, et al. Differential optical absorption spectroscopy system for multi purpose applications[C]// Instrumentation and Measurement Technology Conference. IEEE, 2014:1193-1196.

    [14] Mckay A, Dawes J, Dekker P, et al. A comparison of tunable, passively-stabilized two-frequency solid-state lasers for microwave generation[C]// International Topical Meeting on Microwave Photonics. IEEE, 2005:161-164.

    [15] Danion G, Hamel C, Frein L, et al. Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes.[J]. Optics Express, 2014, 22(15):17673.

    [16] Rolland A, Brunel M, Loas G, et al. Beat note stabilization of a 10–60 GHz dual polarization Nd:YAG microchip laser through optical down conversion[C]// Lasers and Electro-Optics Europe. IEEE, 2011:1-1.

    [17] Le G J, Morvan L, Alouini M, et al. Dual-frequency single-axis laser using a lead lanthanum zirconate tantalate (PLZT) birefringent etalon for millimeter wave generation: beyond the standard limit of tunability.[J]. Optics Letters, 2007, 32(9):1090.

    [18] Kim M S, Kim S W. Two-longitudinal-mode He-Ne laser for heterodyne interferometers to measure displacement[J]. Appl Opt, 2002, 41(28):5938-5942.

    [21] Shukla M K, Maji P S, Das R. Yb-fiber laser pumped high-power, broadly tunable, single-frequency red source based on a singly resonant optical parametric oscillator[J]. Optics Letters, 2016, 41(13):3033.

    [22] Yang J F , Liu S D , He J L, et al. Tunable simultaneous dual-wavelength laser at 1.9 and 1.7 μm based on KTiOAsO4 optical parametric oscillator[J]. Laser Physics Letters, 2011, 8(1):28-31.

    [23] Chen T , Wu B , Liu W , et al. Efficient parametric conversion from 1.06 to 3.8 μm by an aperiodically poled cascaded lithium niobate.[J]. Optics Letters, 2011, 36(6):921-3.

    [25] Bjorkholm J E. Some effects of spatially nonuniform pumping in pulsed optical parametric oscillators[J]. IEEE Journal of Quantum Electronics, 1971, 7(3):109-118.

    LI Kun, YANG Su-Hui, WANG Xin, LI Zhuo, ZHANG Jin-Ying. Tunable Mid-IR dual frequency laser based on a single-resonant optical parametric oscillator[J]. Journal of Infrared and Millimeter Waves, 2019, 38(2): 195
    Download Citation