• Journal of Inorganic Materials
  • Vol. 35, Issue 4, 431 (2020)
Tong WANG1, Yuanhao WANG1, Haibo YANG1、*, Shuya GAO1, Fen WANG1, and Yawen LU2
Author Affiliations
  • 1Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
  • 2Xianyang Research and Design Institute of Ceramics Co. Ltd, Xianyang 712000, China
  • show less
    DOI: 10.15541/jim20190170 Cite this Article
    Tong WANG, Yuanhao WANG, Haibo YANG, Shuya GAO, Fen WANG, Yawen LU. Dielectric and Energy Storage Property of BaTiO3-ZnNb2O6 Ceramics[J]. Journal of Inorganic Materials, 2020, 35(4): 431 Copy Citation Text show less
    References

    [1] M ACOSTA, N NOVAK, V ROJAS et al. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev., 4, 041305(2017).

    [2] D HENNINGS, G ROSENSTEIN. Temperature-stable dielectrics based on chemically inhomogeneous BaTiO3. J. Am. Ceram. Soc., 67, 249-254(1984).

    [3] W JIANG X, H HAO, J ZHANG S et al. Enhanced energy storage and fast discharge properties of BaTiO3 based ceramics modified by Bi(Mg1/2Zr1/2)O3. J. Eur. Ceram. Soc., 39, 1103-1109(2019).

    [4] A HUANG Y, B LU, Z YI X et al. Grain size effect on dielectric, piezoelectric and ferroelectric property of BaTiO3 ceramics with fine grains. J. Inorg. Mater., 33, 767-772(2018).

    [5] H GHAYOUR, M ABDELLAHI. A brief review of the effect of grain size variation on the electrical properties of BaTiO3-based ceramics. Powder Technol., 292, 84-93(2016).

    [6] A ZEB, J MILNE S. Temperature-stable dielectric properties from -20 ℃ to 430 ℃ in the system BaTiO3-Bi(Mg0.5Zr0.5)O3. J. Eur. Ceram. Soc., 34, 3159-3166(2014).

    [7] D DAMJANOVIC. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys., 61, 1267-1324(1998).

    [8] Q GUO F, H ZHANG B, X FAN Z et al. Grain size effects on piezoelectric properties of BaTiO3 ceramics prepared by spark plasma sintering. J. Mater. Sci.: Mater. Electron., 27, 5967-5971(2016).

    [9] B YUAN Q, G LI, Z YAO F et al. Simultaneously achieved temperature- insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics. Nano Energy, 52, 203-210(2018).

    [10] H HAO X. A review on the dielectric materials for high energy- storage application. J. Adv. Dielect., 03, 1330001(2013).

    [11] L DU H, T YANG Z, F GAO et al. Lead-free nonlinear dielectric ceramics for energy storage applications: current status and challenges. J. Inorg. Mater., 33, 1046-1058(2018).

    [12] T YANG L, X KONG, F LI et al. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater Sci., 102, 72-108(2019).

    [13] F YAN, B YANG H, Y LIN et al. Dielectric and ferroelectric properties of SrTiO3-Bi0.5Na0.5TiO3-BaAl0.5Nb0.5O3 lead-free ceramics for high-energy-storage applications. Inorg. Chem., 56, 13510-13516(2017).

    [14] B YANG H, F YAN, Y LIN et al. Novel strontium titanate-based lead-free ceramics for high-energy storage applications. ACS Sustainable Chem. Eng., 5, 10215-10222(2017).

    [15] B YANG H, F YAN, Y LIN et al. Lead-free BaTiO3- Bi0.5Na0.5TiO3-Na0.73Bi0.09NbO3 relaxor ferroelectric ceramics for high energy storage. J. Eur. Ceram. Soc., 37, 3303-3311(2017).

    [16] F YAN, B YANG H, L YING et al. Enhanced energy storage properties of a novel lead-free ceramic with a multilayer structure. J. Mater. Chem. C, 6, 7905-7912(2018).

    [17] Y LIU X, B YANG H, F YAN et al. Enhanced energy storage properties of BaTiO3-Bi0.5Na0.5TiO3 lead-free ceramics modified by SrY0.5Nb0.5O3. J. Alloys Compd., 778, 97-104(2019).

    [18] B YANG H, F LIU P, F YAN et al. A novel lead-free ceramic with layered structure for high energy storage applications. J. Alloys Compd., 773, 244-249(2019).

    [19] T YANG Z, F GAO, L DU H et al. Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy, 58, 768-777(2019).

    [20] T WANG, L JIN, Y TIAN et al. Microstructure and ferroelectric properties of Nb2O5-modified BiFeO3-BaTiO3 lead-free ceramics for energy storage. Mater. Lett., 137, 79-81(2014).

    [21] L JIN, F LI, J ZHANG S. Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc., 97, 1-27(2014).

    [22] T WANG, C HU J, B YANG H et al. Dielectric relaxation and Maxwell-Wagner interface polarization in Nb2O5 doped 0.65BiFeO3-0.35BaTiO3 ceramics. J. Appl. Phys., 121, 084103(2017).

    [23] H HUANG Y, J WU Y, J LI et al. Enhanced energy storage properties of barium strontium titanate ceramics prepared by Sol-Gel method and spark plasma sintering. J. Alloys Compd., 701, 439-446(2017).

    [24] S PULI V, K PRADHAN D, B CHRISEY D et al. Structure, dielectric, ferroelectric, and energy density properties of (1-x)BZT-xBCT ceramic capacitors for energy storage applications. J. Mater. Sci., 48, 2151-2157(2012).

    [25] Z SUN, X LI L, H YU S et al. Energy storage properties and relaxor behavior of lead-free Ba1-xSm2x/3Zr0.15Ti0.85O3 ceramics. Dalton Trans., 46, 14341-14347(2017).

    [26] T WANG, L JIN, C LI C et al. Relaxor ferroelectric BaTiO3- Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc., 98, 559-566(2015).

    [27] Y HU Q, L JIN, T WANG et al. Dielectric and temperature stable energy storage properties of 0.88BaTiO3-0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics. J. Alloys Compd., 640, 416-420(2015).

    [28] B YUAN Q, Z YAO F, F WANG Y et al. Relaxor ferroelectric 0.9BaTiO3-0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties. J. Mater. Chem. C, 5, 9552-9558(2017).

    [29] B LI W, D ZHOU, X PANG L et al. Novel barium titanate based capacitors with high energy density and fast discharge performance. J. Mater. Chem. A, 5, 19607-19612(2017).

    [30] R WANG X, Y ZHANG, Z SONG X et al. Glass additive in barium titanate ceramics and its influence on electrical breakdown strength in relation with energy storage properties. J. Eur. Ceram. Soc., 32, 559-567(2012).

    [31] T WANG, L JIN, L SHU L et al. Energy storage properties in Ba0.4Sr0.6TiO3 ceramics with addition of semi-conductive BaO-B2O3-SiO2-Na2CO3-K2CO3 glass. J. Alloys Compd., 617, 399-403(2014).

    [32] B YANG H, F YAN, Y LIN et al. Enhanced energy storage properties of Ba0.4Sr0.6TiO3 lead-free ceramics with Bi2O3-B2O3-SiO2 glass addition. J. Eur. Ceram. Soc., 38, 1367-1373(2018).

    [33] B YANG H, F YAN, G ZHANG et al. Dielectric behavior and impedance spectroscopy of lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics with B2O3-Al2O3-SiO2 glass-ceramics addition for enhanced energy storage. J. Alloys Compd., 720, 116-125(2017).

    [34] T WU, P PU Y, K CHEN. Dielectric relaxation behavior and energy storage properties in Ba0.4Sr0.6Zr0.15Ti0.85O3 ceramics with glass additives. Ceram. Int., 39, 6787-6793(2013).

    [35] T WANG, H WANG Y, B YANG H et al. Structure, dielectric properties of low-temperature-sintering BaTiO3-based glass-ceramics for energy storage. J. Adv. Dielect., 8, 1850041(2018).

    [36] F GAO, J LIU J, Z HONG R et al. Microstructure and dielectric properties of low temperature sintered ZnNb2O6 microwave ceramics. Ceram. Int., 35, 2687-2692(2009).

    [37] T WANG, Y WEI X, Y HU Q et al. Effects of ZnNb2O6 addition on BaTiO3 ceramics for energy storage. Mater. Sci. Eng. B, 178, 1081-1086(2013).

    [38] Y YAN, C NING, Z JIN Z et al. The dielectric properties and microstructure of BaTiO3 ceramics with ZnO-Nb2O5 composite addition. J. Alloys Compd., 646, 748-752(2015).

    [39] Y YANG, H LIU K, K LIU X et al. Electrical properties and microstructures of (Zn and Nb) co-doped BaTiO3 ceramics prepared by microwave sintering. Ceram. Int., 42, 7877-7882(2016).

    [40] D SPAGNOL P, A VARELA J, A ZAGHETE M et al. Evidence of hetero-epitaxial growth of Pb(Mg1/3Nb2/3)O3 on the BaTiO3 seed particles of a citrate solution. Mater. Chem. Phys., 77, 918-923(2002).

    [41] B YANG H, F YAN, Y LIN et al. Enhanced energy-storage properties of lanthanum-doped Bi0.5Na0.5TiO3-based lead-free ceramics. Energy Technol., 6, 357-365(2018).

    [42] X JIA W, D HOU Y, P ZHENG M et al. Superior temperature- stable dielectrics for MLCCs based on Bi0.5Na0.5TiO3-NaNbO3 system modified by CaZrO3. J. Am. Ceram. Soc., 101, 3468-3479(2018).

    [43] Y SUN, H LIU, H HAO et al. Structure property relationship in BaTiO3-Na0.5Bi0.5TiO3-Nb2O5-NiO X8R system. J. Am. Ceram. Soc., 98, 1574-1579(2015).

    Tong WANG, Yuanhao WANG, Haibo YANG, Shuya GAO, Fen WANG, Yawen LU. Dielectric and Energy Storage Property of BaTiO3-ZnNb2O6 Ceramics[J]. Journal of Inorganic Materials, 2020, 35(4): 431
    Download Citation