• Photonic Sensors
  • Vol. 1, Issue 1, 31 (2011)
Lei ZHANG1, Jingyi LOU2, and and Limin TONG1、*
Author Affiliations
  • 1State Key Lab of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
  • 2Zhejiang University of Science and Technology, Hangzhou 310023, China
  • show less
    DOI: 10.1007/s13320-010-0022-z Cite this Article
    Lei ZHANG, Jingyi LOU, and Limin TONG. Micro/Nanofiber Optical Sensors[J]. Photonic Sensors, 2011, 1(1): 31 Copy Citation Text show less
    References

    [1] A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sensors and Actuators B: Chemical, vol. 125, no. 2, pp. 688-703, 2007.

    [2] O. S. Wolfbeis, “Fiber-Optic Chemical Sensors and Biosensors,” Analytical Chemistry, vol. 80, no. 12, pp. 4269-4283, 2008.

    [3] J. Bures and R. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” Journal of the Optical Society America A, vol. 16, no. 8, pp. 1992-1996, 1999.

    [4] L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Optics Express, vol. 12, no. 6, pp. 1025-1035, 2004.

    [5] J. Y. Lou, L. M. Tong, and Z. Z. Ye, “Modeling of silica nanowires for optical sensing,” Optics Express, vol. 13, no. 6, pp. 2135-2140, 2005.

    [6] L. M. Tong, R. R. Gattass, J. B. Ashcom et al., “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature, vol. 426, no. 6968, pp. 816-819, 2003.

    [7] G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Optics Express, vol. 12, no. 10, pp. 2258-2263, 2004.

    [8] S. Leon-Saval, T. Birks, W. Wadsworth et al., “Supercontinuum generation in submicron fibre waveguides,” Optics. Express, vol. 12, no. 13, pp. 2864-2869, 2004.

    [9] S. A. Harfenist, S. D. Cambron, E. W. Nelson et al., “Direct drawing of suspended filamentary micro- and nanostructures from liquid polymers,” Nano Letters, vol. 4, no. 10, pp. 1931-1937, 2004.

    [10] M. Sumetsky, Y. Dulashko, and A. Hale, “Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer,” Optics Express, vol. 12, no. 15, pp. 3521-3531, 2004.

    [11] G. Brambilla, E. Koizumi, X. Feng et al., “Compound-glass optical nanowires,” Electronics Letters, vol. 41, no. 7, pp. 400-402, 2005.

    [12] L. M. Tong, J. Y. Lou, Z. Z. Ye et al., “Self-modulated taper drawing of silica nanowires,” Nanotechnology, vol. 16, no. 9, pp. 1445-1448, 2005.

    [13] G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electronics Letters, vol. 42, no. 9, pp. 517-519, 2006.

    [14] L. Shi, X. F. Chen, H. J. Liu et al., “Fabrication of submicron-diameter silica fibers using electric strip heater,” Optics Express, vol. 14, no. 12, pp. 5055-5060, 2006.

    [15] L. M. Tong, L. L. Hu, J. J. Zhang et al., “Photonic nanowires directly drawn from bulk glasses,” Optics Express, vol. 14, no. 1, pp. 82-87, 2006.

    [16] E. J. Zhang, W. D. Sacher, and J. K. Poon, “Hydrofluoric acid flow etching of low-loss subwavelength-diameter biconical fiber tapers,” Optics Express, vol. 18, no. 21, pp. 22593-22598, 2010.

    [17] S. Pricking and H. Giessen, “Tapering fibers with complex shape,” Optics Express, vol. 18, no. 4, pp. 3426-3437, 2010.

    [18] J. Y. Lou, L. M. Tong, and Z. Z. Ye, “Dispersion shifts in optical nanowires with thin dielectric coatings,” Optics Express, vol. 14, no. 16, pp. 6993-6998, 2006.

    [19] G. Y. Zhai and L. M. Tong, “Roughness-induced radiation losses in optical micro or nanofibers,” Optics Express, vol. 15, no. 21, pp. 13805-13816, 2007.

    [20] A. V. Kovalenko, V. N. Kurashov, and A. V. Kisil, “Radiation losses in optical nanofibers with random rough surface,” Optics Express, vol. 16, no. 8, pp. 5797-5806, 2008.

    [21] H. K. Yu, S. S. Wang, J. Fu et al., “Modeling bending losses of optical nanofibers or nanowires,” Applied Optics, vol. 48, no. 22, pp. 4365-4369, 2009.

    [22] S. S. Wang, Z. F. Hu, H. K. Yu et al., “Endface reflectivities of optical nanowires,” Optics Express, vol. 17, no. 13, pp. 10881-10886, 2009.

    [23] M. Sumetsky, Y. Dulashko, J. M. Fini et al., “Optical microfiber loop resonator,” Applied Physics Letters, vol. 86, no. 16, pp. 161108, 2005.

    [24] L. M. Tong, J. Y. Lou, R. R. Gattass et al., “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Letters, vol. 5, no. 2, pp. 259-262, 2005.

    [25] X. S. Jiang, L. M. Tong, G. Vienne et al., “Demonstration of optical microfiber knot resonators,” Applied Physics Letters, vol. 88, no. 22, pp. 223501, 2006.

    [26] X. D. Jiang, Y. Chen, G. Vienne et al., “All-fiber add-drop filters based on microfiber knot resonators,” Optics Letters, vol. 32, no. 12, pp. 1710-1712, 2007.

    [27] F. Xu and G. Brambilla, “Manufacture of 3-D microfiber coil resonators,” IEEE Photonics Technology Letters, vol. 19, no. 17-20, pp. 1481-1483, 2007.

    [28] Y. Chen, Z. Ma, Q. Yang et al., “Compact optical short-pass filters based on microfibers,” Optics Letters, vol. 33, no. 21, pp. 2565-2567, 2008.

    [29] G. Vienne, A. Coillet, P. Grelu et al., “Demonstration of a reef knot microfiber resonator,” Optics Express, vol. 17, no. 8, pp. 6224-6229, 2009.

    [30] S. S. Wang, Z. F. Hu, Y. H. Li et al., “All-fiber Fabry-Perot resonators based on microfiber Sagnac loop mirrors,” Optics Letters, vol. 34, no. 3, pp. 253-255, 2009.

    [31] P. Wang, L. Zhang, Z. Y. Yang et al., “Fusion Spliced Microfiber Closed-Loop Resonators,” IEEE Photonics Technology Letters, vol. 22, no. 15, pp. 1075-1077, 2010.

    [32] X. Guo, Y. H. Li, X. S. Jiang et al., “Demonstration of critical coupling in microfiber loops wrapped around a copper rod,” Applied Physics Letters, vol. 91, no. 7, pp. 073512, 2007.

    [33] Y. H. Li and L. M. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Optics Letters, vol. 33, no. 4, pp. 303-305, 2008.

    [34] F. Xu and G. Brambilla, “Embedding optical microfiber coil resonators in Teflon,” Optics Letters, vol. 32, no. 15, pp. 2164-2166, 2007.

    [35] N. Lou, R. Jha, J. L. Domínguez-Juárez et al., “Embedded optical micro/nano-fibers for stable devices,” Optics Letters, vol. 35, no. 4, pp. 571-573, 2010.

    [36] I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Optics Letters, vol. 31, no. 9, pp. 1319-1321, 2006.

    [37] A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Optics Letters, vol. 31, no. 12, pp. 1896-1898, 2006.

    [38] D. Keng, S. R. McAnanama, I. Teraoka et al., “Resonance fluctuations of a whispering gallery mode biosensor by particles undergoing Brownian motion,” Applied Physics Letters, vol. 91, no. 10, pp. 103902, 2007.

    [39] F. Vollmer, D. Braun, A. Libchaber et al., “Protein detection by optical shift of a resonant microcavity,” Applied Physics Letters, vol. 80, no. 21, pp. 4057-4059, 2002.

    [40] P. Polynkin, A. Polynkin, N. Peyghambarian et al., “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Optics Letters, vol. 30, no. 11, pp. 1273-1275, 2005.

    [41] W. Liang, Y. Y. Huang, Y. Xu et al., “Highly sensitive fiber Bragg grating refractive index sensors,” Applied Physics Letters, vol. 86, no. 15, pp. 151122, 2005.

    [42] X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Optics Letters, vol. 35, no. 7, pp. 1007-1009, 2010.

    [43] Y. H. Tai and P. K. Wei, “Sensitive liquid refractive index sensors using tapered optical fiber tips,” Optics Letters, vol. 35, no. 7, pp. 944-946, 2010.

    [44] X. Xing, Y. Wang, and B. Li, “Nanofibers drawing and nanodevices assembly in poly(trimethylene terephthalate),” Optics Express, vol. 16, no. 14, pp. 10815-10822, 2008.

    [45] H. Zhu, Y. Wang, and B. Li, “Tunable Refractive Index Sensor with Ultracompact Structure Twisted by Poly(trimethylene terephthalate) Nanowires,” ACS Nano, vol. 3, no. 10, pp. 3110-3114, 2009.

    [46] L. Shi, Y. H. Xu, W. Tan et al., “Simulation of optical microfiber loop resonators for ambient refractive index sensing,” Sensors, vol. 7, no. 5, pp. 689-696, 2007.

    [47] X. Guo and L. M. Tong, “Supported microfiber loops for optical sensing,” Optics Express, vol. 16, no. 19, pp. 14429-14434, 2008.

    [48] F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Optics Express, vol. 15, no. 12, pp. 7888-7893, 2007.

    [49] F. Xu and B. Gilberto, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Applied Physics Letters, vol. 92, no. 10, pp. 101126, 2008.

    [50] F. Xu, V. Pruneri, V. Finazzi et al., “An embedded optical nanowire loop resonator refractometric sensor,” Optics Express, vol. 16, no. 2, pp. 1062-1067, 2008.

    [51] F. Xu, G. Brambilla, and Y. Q. Lu, “A microfluidic refractometric sensor based on gratings in optical fibre microwires,” Optics Express, vol. 17, no. 23, pp. 20866-20871, 2009.

    [52] P. H. Wu, C. H. Sui, and B. Q. Ye, “Modelling nanofiber Mach-Zehnder interferometers for refractive index sensors,” Journal of Modern Optics, vol. 56, no. 21, pp. 2335-2339, 2009.

    [53] M. Sumetsky, Y. Dulashko, J. M. Fini et al., “The microfiber loop resonator: Theory, experiment, and application,” Journal of Lightwave Technology, vol.24, no. 1, pp. 242-250, 2006.

    [54] Y. Wu, Y. J. Rao, Y. H. Chen et al., “Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators,” Optics Express, vol. 17, no. 20, pp. 18142-18147, 2009.

    [55] X. Zeng, Y. Wu, C. L. Hou et al., “A temperature sensor based on optical microfiber knot resonator,” Optics Communications, vol. 282, no. 18, pp. 3817-3819, 2009.

    [56] J. L. Kou, J. Feng, L. Ye et al., “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Optics. Express, vol. 18, no. 13, pp. 14245-14250, 2010.

    [57] B. B. Li, Q. Y. Wang, Y. F. Xiao et al., “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Applied Physics Letters, vol. 96, no. 25, pp. 251109, 2010.

    [58] J. Scheuer, “Fiber microcoil optical gyroscope,” Optics Letters, vol. 34, no. 11, pp. 1630-1632, 2009.

    [59] C. L. Hou, Y. Wu, X. Zeng et al., “Novel high sensitivity accelerometer based on a microfiber loop resonator,” Optical Engineering, vol. 49, no. 1, pp. 014402, 2010.

    [60] M. Belal, Z. Song, Y. Jung et al., “Optical fiber microwire current sensor,” Optics Letters, vol. 35, no. 18, pp. 3045-3047, 2010.

    [61] F. Gu, L. Zhang, X. Yin et al., “Polymer single-nanowire optical sensors,” Nano Letters, vol. 8, no. 9, pp. 2757-2761, 2008.

    [62] L. Zhang, F. X. Gu, J. Y. Lou et al., “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Optics Express, vol. 16, no. 17, pp. 13349-13353, 2008.

    [63] J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sensors and Actuators B-Chemical, vol. 110, no. 1, pp. 23-27, 2005.

    [64] J. Villatoro and D. Monzon-Hernandez, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Optics Express, vol. 13, no. 13, pp. 5087-5092, 2005.

    [65] F. X. Gu, X. F. Yin, H. K. Yu et al., “Polyaniline/polystyrene single-nanowire devices for highly selective optical detection of gas mixtures,” Optics Express, vol. 17, no. 13, pp. 11230-11235, 2009.

    [66] F. Warken, E. Vetsch, D. Meschede et al., “Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers,” Optics Express, vol. 15, no. 19, pp. 11952-11958, 2007.

    [67] A. Stiebeiner, O. Rehband, R. Garcia-Fernandez et al., “Ultra-sensitive fluorescence spectroscopy of isolated surface-adsorbed molecules using an optical nanofiber,” Optics Express, vol. 17, no. 24, pp. 21704-21711, 2009.

    [68] G. Vishnoi, T. C. Goel, and P. K. C. Pillai, “Spectrophotometric studies of chemical species using tapered core multimode optical fiber,” Sensors and Actuators B-Chemical, vol. 45, no. 1, pp. 43-48, 1997.

    [69] F. Baldini, L. Ciaccheri, A. Falai et al., “Thymol blue immobilized on tapered fibres as an optical transducer for pH sensing,” Chemical, Biochemical, and Environmental Fiber Sensors X, vol. 3540, pp. 28-33, 1999.

    [70] P. J. Wiejata, P. M. Shankar, and R. Mutharasan, “Fluorescent sensing using biconical tapers,” Sensors and Actuators B-Chemical, vol. 96, no. 1-2, pp. 315-320, 2003.

    [71] K. Waich, T. Mayr, and I. Klimant, “Microsensors for detection of ammonia at ppb-concentration levels,” Measurement Science & Technology, vol. 18, no. 10, pp. 3195-3201, 2007.

    [72] C. R. Zamarreno, J. Bravo, J. Goicoechea et al., “Response time enhancement of pH sensing films by means of hydrophilic nanostructured coatings,” Sensors and Actuators B-Chemical, vol. 128, no. 1, pp. 138-144, 2007.

    [73] Y. Sun and X. Fan, “Analysis of ring resonators for chemical vapor sensor development,” Optics Express, vol. 16, no. 14, pp. 10254-10268, 2008.

    [74] Y. Sun, S. I. Shopova, G. Frye-Mason et al., “Rapid chemical-vapor sensing using optofluidic ring resonators,” Optics Letters, vol. 33, no. 8, pp. 788-790, 2008.

    Lei ZHANG, Jingyi LOU, and Limin TONG. Micro/Nanofiber Optical Sensors[J]. Photonic Sensors, 2011, 1(1): 31
    Download Citation