• Chinese Journal of Quantum Electronics
  • Vol. 39, Issue 2, 225 (2022)
Zhuoyi WANG1、*, Jun ZENG2、3, Hao ZHANG1, Xingyuan LU1, Chengliang ZHAO1, and Yangjian CAI1、2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2022.02.004 Cite this Article
    WANG Zhuoyi, ZENG Jun, ZHANG Hao, LU Xingyuan, ZHAO Chengliang, CAI Yangjian. Coherence modulation and topological charge measurement of vortex field[J]. Chinese Journal of Quantum Electronics, 2022, 39(2): 225 Copy Citation Text show less
    References

    [1] Nye J F, Berry M V. A Half-Century of Physical Asymptotics and Other Diversions: Selected Works by Michael Berry[M]. World Scientific, 1974: 6-31.

    [2] Coullet P, Gil L, Rocca F. Optical vortices[J]. Optics Communications, 1989, 73(5): 403-408.

    [3] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

    [4] Guo C, Yu Y, Hong Z. Optical sorting using an array of optical vortices with fractional topological charge[J]. Optics Communications, 2010, 283(9): 1889-1893.

    [5] Dong M, Jiang D, Luo N, et al. Trapping two types of Rayleigh particles using a focused partially coherent anomalous vortex beam[J]. Applied Physics B-Lasers and Optics, 2019, 125(4): 55.

    [6] Zhao C L, Cai Y J, Lu X H, et al. Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle[J]. Optics Express, 2009, 17(3): 1753-1765.

    [7] Liang C, Monfared Y E, Liu X, et al. Optimizing illumination’s complex coherence state for overcoming Rayleigh’s resolution limit[J]. Chinese Optics Letters, 2021, 19(5): 052601.

    [8] Li Y, Cui Z, Han Y, et al. Channel capacity of orbital-angular-momentum-based wireless communication systems with partially coherent elegant Laguerre-Gaussian beams in oceanic turbulence[J]. Journal of the Optical Society of America A, 2019, 36(4): 471-477.

    [9] Peng J, Zhang L, Zhang K, et al. Channel capacity of OAM based FSO communication systems with partially coherent Bessel-Gaussian beams in anisotropic turbulence[J]. Optics Communications, 2018, 418(1): 32-36.

    [10] Gori F, Santarsiero M, Borghi R, et al. Partially coherent sources with helicoidal modes[J]. Journal of Modern Optics, 1998, 45(3): 539-554.

    [11] Wolf E. Introduction to the Theory of Coherence and Polarization of Light[M]. Cambridge University Press, 2007: 174-194.

    [12] Gori F, Guattari G, Padovani C. Bessel-Gauss beams[J]. Optics Communications, 1987, 64(6): 491-495.

    [13] Durnin J, Miceli J J, Eberly J H. Diffraction-free beams[J]. Physical Review Letters, 1987, 58(15): 1499-1501.

    [14] Wang F, Zhu S J, Cai Y J. Experimental study of the focusing properties of a Gaussian Schell-model vortex beam[J]. Optics Letters, 2011, 36(16): 3281-3283.

    [15] Chen Y H, Wang F, Zhao C L, et al. Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam[J]. Optics Express, 2014, 22(5): 5826-5838.

    [16] Zhang Y T, Liu L, Zhao C L, et al. Multi-Gaussian Schell-model vortex beam[J]. Physics Letters A, 2014, 378(9): 750-754.

    [17] Peng X F, Lu X Y, Liu X L, et al. Generation and propagation of a Hermite-Gaussian correlated Schell-Model LG(0l) beam[J]. Applied Sciences, 2019, 9(3): 610.

    [18] Cai Y, Chen Y, Wang F. Generation and propagation of partially coherent beams with nonconventional correlation functions: A review[Invited][J]. Journal of the Optical Society of America A, 2014, 31(9): 2083-2096.

    [19] Deschamps J, Courjon D, Bulabois J. Gaussian Schell-model sources: An example and some perspectives[J]. Journal of the Optical Society of America, 1983, 73(3): 256-261.

    [20] Brandao P A, Cavalcanti S B. Topological charge identification of partially coherent light diffracted by a triangular aperture[J]. Physics Letters A, 2016, 380(47): 4013-4017.

    [21] Zhao C L, Dong Y, Wang Y M, et al. Experimental generation of a partially coherent Laguerre-Gaussian beam[J]. Applied Physics B, 2012, 109: 345-349.

    [22] Zhao C, Wang F, Dong Y, et al. Effect of spatial coherence on determining the topological charge of a vortex beam[J]. Applied Physics Letters, 2012, 101: 261104.

    [23] Liu X, Wu T, Liu L, et al. Experimental determination of the azimuthal and radial mode orders of a partially coherent LGp l beam[J]. Chinese Optics Letters, 2017, 15(3): 030002.

    [24] Chen T C, Lu X Y, Zeng J, et al. Young’s double-slit experiment with a partially coherent vortex beam[J]. Optics Express, 2020, 28(25): 38106-38114.

    [25] Wolf E. New theory of partial coherence in the space-frequency domain. Part I: Spectra and cross spectra of steady-state sources[J]. Journal of the Optical Society of America A, 1982, 72(3): 343-351.

    [26] Chen X, Li J, Rafsanjani S M H, et al. Synthesis of Im-Bessel correlated beams via coherent modes[J]. Optics Letters, 2018, 43(15): 3590-3593.

    [27] Wang F, Lv H, Chen Y, et al. Three modal decompositions of Gaussian Schell-model sources: Comparative analysis[J]. Optics Express, 2021, 29(19): 29676-29689.

    [28] Yang Y J, Zhu X L, Zeng J, et al. Anomalous Bessel vortex beam: Modulating orbital angular momentum with propagation[J]. Nanophotonics, 2018, 7(3): 677-682.

    [29] Perez-Garcia B, Yepiz A, Hernandez-Aranda R I, et al. Digital generation of partially coherent vortex beams[J]. Optics Letters, 2016, 41(15): 3471-3474.

    [30] Ostrovsky A S, García-García J, Rickenstorff-Parrao C, et al. Partially coherent diffraction-free vortex beams with a Bessel-mode structure[J]. Optics Letters, 2017, 42(24): 5182-5185.

    [31] Stoklasa B, Motka L, Rehacek J, et al. Wavefront sensing reveals optical coherence[J]. Nature Communications, 2014, 5(1): 1-7.

    [32] Vaughan J M, Willetts D V. Interference properties of a light beam having a helical wave surface[J]. Optics Communications, 1979, 30(3): 263-267.

    [33] Berkhout G C G, Beijersbergen M W. Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects[J]. Physical Review Letters, 2008, 101(10): 100801.

    [34] Mourka A, Baumgartl J, Shanor C, et al. Visualization of the birth of an optical vortex using diffraction from a triangular aperture[J]. Optics Express, 2011, 19(7): 5760-5771.

    [35] Guo C S, Yue S J, Wei G X. Measuring the orbital angular momentum of optical vortices using a multipinhole plate[J]. Applied Physics Letters, 2009, 94(23): 231104.

    [36] Prabhakar S, Kumar A, Banerji J, et al. Revealing the order of a vortex through its intensity record[J]. Optics Letters, 2011, 36(22): 4398-4400.

    [37] Zhao P, Li S, Feng X, et al. Measuring the complex orbital angular momentum spectrum of light with a mode-matching method[J]. Optics Letters, 2017, 42(6): 1080-1083.

    [38] Yang Y, Chen M, Mazilu M, et al. Effect of the radial and azimuthal mode indices of a partially coherent vortex field upon a spatial correlation singularity[J]. New Journal of Physics, 2013, 15(11): 113053.

    [39] Lu X Y, Zhao C L, Shao Y F, et al. Phase detection of coherence singularities and determination of the topological charge of a partially coherent vortex beam[J]. Applied Physics Letters, 2019, 114(20): 201106.

    [40] Wang T, Pu J X, Chen Z Y. Beam-spreading and topological charge of vortex beams propagating in a turbulent atmosphere[J]. Optics Communications, 2009, 282(7): 1255-1259.

    [41] Sztul H I, Alfano R R. Double-slit interference with Laguerre-Gaussian beams[J]. Optics Letters, 2006, 31(7): 999-1001.

    [42] Basistiy I V, Soskin M S, Vasnetsov M V. Optical wavefront dislocations and their properties[J]. Optics Communications, 1995, 119(5-6): 604-612.

    [43] Berry M V. Optical vortices evolving from helicoidal integer and fractional phase steps[J]. Journal of Optics A: Pure and Applied Optics, 2004, 6(2): 259.

    [44] Lee W M, Yuan X C, Dholakia K. Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step[J]. Optics Communications, 2004, 239(1-3): 129-135.

    [45] Gao J, Zhu Y, Wang D, et al. Bessel-Gauss photon beams with fractional order vortex propagation in weak non-Kolmogorov turbulence[J]. Photonics Research, 2016, 4(2): 30-34.

    [46] Gbur G. Fractional vortex Hilbert’s hotel[J]. Optica, 2016, 3(3): 222-225.

    [47] Yang Y, Zhu X, Zeng J, et al. Anomalous Bessel vortex beam: Modulating orbital angular momentum with propagation[J]. Nanophotonics, 2018, 7(3): 677-682.

    [48] Oemrawsingh S R, Aiello A, Eliel E R, et al. How to observe high-dimensional two-photon entanglement with only two detectors[J]. Physical Review Letters, 2004, 92(21): 217901.

    [49] Calvo G F, Picón A, Bramon A. Measuring two-photon orbital angular momentum entanglement[J]. Physical Review A, 2007, 75(1): 012319.

    [50] Tao S H, Yuan X C, Lin J, et al. Fractional optical vortex beam induced rotation of particles[J]. Optics Express, 2005, 13(20): 7726-7731.

    [51] Tkachenko G, Chen M, Dholakia K, et al. Is it possible to create a perfect fractional vortex beam?[J]. Optica, 2017, 4(3): 330-333.

    [52] Chen L, Lei J, Romero J. Quantum digital spiral imaging[J]. Light: Science & Applications, 2014, 3(3): e153.

    [53] Situ G, Warber M, Pedrini G, et al. Phase contrast enhancement in microscopy using spiral phase filtering[J]. Optics Communications, 2010, 283(7): 1273-1277.

    [54] Wang J, Zhang W, Qi Q, et al. Gradual edge enhancement in spiral phase contrast imaging with fractional vortex filters[J]. Scientific Reports, 2015, 5(1): 1-6.

    [55] Zeng J, Liu X L, Wang F, et al. Partially coherent fractional vortex beam[J]. Optics Express, 2018, 26(21): 26830-26844.

    [56] Zeng J, Liang C H, Wang H Y, et al. Partially coherent radially polarized fractional vortex beam[J]. Optics Express, 2020, 28(8): 11493-11513.

    [57] Young T. XIV An account of some cases of the production of colours, not hitherto described[J]. Philosophical Transactions of the Royal Society of London, 1802, 92: 387-397.

    [58] Zernike F. The concept of degree of coherence and its application to optical problems[J]. Physica, 1938, 5(8): 785-795.

    [59] Cai Y J, Chen C Y. Paraxial propagation of a partially coherent Hermite-Gaussian beam through aligned and misaligned ABCD optical systems[J]. Journal of the Optical Society of America A, 2007, 24(8): 2394-2401.

    [60] Lin Q, Cai Y J. Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams[J]. Optics Letters, 2002, 27(4): 216-218.

    [61] Leonard M, Emil W. Optical Coherence and Quantum optics[M]. New York: Cambridge University Press, 1995.

    [62] Palacios D M, Maleev I D, Marathay A S, et al. Spatial correlation singularity of a vortex field[J]. Physical Review Letters, 2004, 92(14): 143905.

    [63] Wang F, Cai Y, Korotkova O. Partially coherent standard and elegant Laguerre-Gaussian beams of all orders[J]. Optics Express, 2009, 17(25): 22366-22379.

    [64] Wang T, Pu J, Chen Z. Propagation of partially coherent vortex beams in a turbulent atmosphere[J]. Optical Engineering, 2008, 47(3): 036002.

    [65] Wang F, Cai Y, Eyyuboglu H T, et al. Average intensity and spreading of partially coherent standard and elegant Laguerre-Gaussian beams in turbulent atmosphere[J]. Progress in Electromagnetics Research-PIER, 2010, 103: 33-56.

    [66] Soskin M S, Gorshkov V N, Vasnetsov M V, et al. Topological charge and angular momentum of light beams carrying optical vortices[J]. Physical Review A, 1997, 56(5): 4064-4075.

    [67] Bogatyryova G V, Fel’de C V, Polyanskii P V, et al. Partially coherent vortex beams with a separable phase[J]. Optics Letters, 2003, 28(11): 878-880.

    [68] Gbur G, Visser T D. Coherence vortices in partially coherent beams[J]. Optics Communications, 2003, 222(1-6): 117-125.

    [69] Swartzlander G A, Schmit J. Temporal correlation vortices and topological dispersion[J]. Physical Review Letters, 2004, 93(9): 093901.

    [70] Siegman A E. Hermite-Gaussian functions of complex argument as optical-beam eigenfunctions[J]. Journal of the Optical Society of America, 1973, 63(9): 1093-1094.

    [71] Takenaka T, Yokota M, Fukumitsu O. Propagation of light beams beyond the paraxial approximation[J]. Journal of the Optical Society of America A, 1985, 2(6): 826-829.

    [72] Zauderer E. Complex argument Hermite-Gaussian and Laguerre-Gaussian beams[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 1986, 3(4): 465-469.

    [73] Saghafi S, Sheppard C J R. Near field and far field of elegant Hermite-Gaussian and Laguerre-Gaussian modes[J]. Journal of Modern Optics, 1998, 45(10): 1999-2009.

    [74] Berry M V, Balazs N L. Nonspreading wave packets[J]. American Journal of Physics, 1979, 47(3): 264-267.

    [75] Siviloglou G A, Christodoulides D N. Accelerating finite energy Airy beams[J]. Optics Letters, 2007, 32(8): 979-981.

    [76] Sahin S, Korotkova O. Light sources generating far fields with tunable flat profiles[J]. Optics Letters, 2012, 37(14): 2970-2972.

    [77] Korotkova O, Sahin S, Shchepakina E. Multi-Gaussian Schell-model beams[J]. Journal of the Optical Society of America A, 2012, 29(10): 2159-2164.

    [78] Liang C, Wang F, Liu X, et al. Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry[J]. Optics Letters, 2014, 39(4): 769-772.

    [79] Gori F, Santarsiero M. Devising genuine spatial correlation functions[J]. Optics Letters, 2007, 32(24): 3531-3533.

    [80] Gori F, Ramírez-Sánchez V, Santarsiero M, et al. On genuine cross-spectral density matrices[J]. Journal of Optics A: Pure and Applied Optics, 2009, 11: 085706.

    [81] Martínez-Herrero R, Mejías P M, Gori F. Genuine cross-spectral densities and pseudo-modal expansions[J]. Optics Letters, 2009, 34(9): 1399-1401.

    [82] Martínez-Herrero R, Mejías P M. Elementary-field expansions of genuine cross-spectral density matrices[J]. Optics Letters, 2009, 34(15): 2303-2305.

    [83] Dong Y M, Wang F, Zhao C L, et al. Effect of spatial coherence on propagation, tight focusing, and radiation forces of an azimuthally polarized beam[J]. Physical Review A, 2012, 86(1): 013840.

    [84] Wang F, Cai Y, Dong Y, et al. Experimental generation of a radially polarized beam with controllable spatial coherence[J]. Applied Physics Letters, 2012, 100(5): 051108.

    [85] Nie Z Q, Shi G, Li D Y, et al. Tight focusing of a radially polarized Laguerre-Bessel-Gaussian beam and its application to manipulation of two types of particles[J]. Physics Letters A, 2015, 379(9): 857-863.

    [86] Tong Z, Korotkova O. Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media[J]. Physical Review A, 2010, 82(3): 033836.

    [87] Wolf E. Unified theory of coherence and polarization of random electromagnetic beams[J]. Physics Letters A, 2003, 312(5-6): 263-267.

    [88] Guo L N, Chen Y H, Liu X L, et al. Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam[J]. Optics Express, 2016, 24(13): 13714-13728.

    [89] Dong Y, Guo L, Liang C, et al. Statistical properties of a partially coherent cylindrical vector beam in oceanic turbulence[J]. Journal of the Optical Society of America A, 2015, 32(5): 894-901.

    [90] Goodman J W. Statistical Optics[M]. John Wiley & Sons, 2015.

    [91] Wang F, Wu G, Liu X, et al. Experimental measurement of the beam parameters of an electromagnetic Gaussian Schell-model source[J]. Optics Letters, 2011, 36(14): 2722-2724.

    [92] Wang F, Cai Y. Experimental generation of a partially coherent flat-topped beam[J]. Optics Letters, 2008, 33(16): 1795-1797.

    [93] Farina J D, Narducci L M, Collett E. Generation of highly directional beams from a globally incoherent source[J]. Optics Communications, 1980, 32(2): 203-208.

    [94] He Q, Turunen J, Friberg A T. Propagation and imaging experiments with Gaussian Schell-model beams[J]. Optics Communications, 1988, 67(4): 245-250.

    [95] Carter W H, Bertolotti M. An analysis of the far-field coherence and radiant intensity of light scattered from liquid crystals[J]. Journal of the Optical Society of America A, 1978, 68(3): 329-333.

    [96] Ostrovsky A S, Garcia-Garcia J, Rickenstorff-Parrao C, et al. Partially coherent diffraction-free vortex beams with a Bessel-mode structure[J]. Optics Letters, 2017, 42(24): 5182-5185.

    [97] Mandel L, Wolf E. Optical Coherence and Quantum Optics[M]. Cambridge University Press, 1995.

    [98] Wang F, Liu X L, Yuan Y S, et al. Experimental generation of partially coherent beams with different complex degrees of coherence[J]. Optics Letters, 2013, 38(11): 1814-1816.

    [99] Zhu X, Wang F, Zhao C, et al. Experimental realization of dark and antidark diffraction-free beams[J]. Optics Letters, 2019, 44(9): 2260-2263.

    [100] Wolf E. New spectral representation of random sources and of the partially coherent fields that they generate[J]. Optics Communications, 1981, 38(1): 3-6.

    [101] Wolf E. New theory of partial coherence in the space-frequency domain. Part I: Spectra and cross spectra of steady-state sources[J]. Journal of the Optical Society of America A, 1982, 72(3): 343-351.

    [102] Starikov A, Wolf E. Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields[J]. Journal of the Optical Society of America A, 1982, 72(7): 923-928.

    [103] Basu S, Hyde M W, Xiao X, et al. Computational approaches for generating electromagnetic Gaussian Schell-model sources[J]. Optics Express, 2014, 22(26): 31691-31707.

    [104] Tong R, Dong Z, Chen Y, et al. Fast calculation of tightly focused random electromagnetic beams: Controlling the focal field by spatial coherence[J]. Optics Express, 2020, 28(7): 9713-9727.

    [105] Perez-De-Tejada, Hector, et al. Vortex Dynamics and Optical Vortices[M]. BoD-Books on Demand, 2017: 275-296.

    [106] Dong M, Lu X Y, Zhao C L, et al. Measuring topological charge of partially coherent elegant Laguerre-Gaussian beam[J]. Optics Express, 2018, 26(25): 33035-33043.

    [107] Cui S W, Chen Z Y, Pu J X. Generation and propagation of partially coherent vortex beams[J]. Chinese Optics Letters, 2014, 5(1): 77-80.

    [108] Liu X, Peng X, Liu L, et al. Self-reconstruction of the degree of coherence of a partially coherent vortex beam obstructed by an opaque obstacle[J]. Applied Physics Letters, 2017, 110(18): 181104.

    [109] Zeng J, Lu X Y, Liu L X, et al. Simultaneous measurement of the radial and azimuthal mode indices of a higher-order partially coherent vortex beam based on phase detection[J]. Optics Letters, 2019, 44(15): 3881-3884.

    [110] Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V. Generation of the perfect optical vortex using a liquid-crystal spatial light modulator[J]. Optics Letters, 2013, 38(4): 534-536.

    [111] Wang H, Liu L X, Zhou C D, et al. Vortex beam generation with variable topological charge based on a spiral slit[J]. Nanophotonics, 2019, 8(2): 317-324.

    [112] Chen J, Liu X, Yu J, et al. Simultaneous determination of the sign and the magnitude of the topological charge of a partially coherent vortex beam[J]. Applied Physics B, 2016, 122(7): 1-12.

    [113] Liao K S, Chen Z Y, Pu J X. Measuring the topological charge of vortex beams with Young’s double-slit interference experiment[J]. Journal of Huaqiao University (Natural Science), 2009, 30(6): 623-627.

    [114] Yang Y J, Liu Y D. Measuring azimuthal and radial mode indices of a partially coherent vortex field[J]. Journal of Optics, 2016, 18(1): 015604.

    [115] Malik M, Murugkar S, Leach J, et al. Measurement of the orbital angular momentum spectrum of partially coherent fields using double angular slit interference[J]. Physical Review A, 2012, 86(1): 063806.

    [116] Yan Y, Yue Y, Huang H, et al. Multicasting in a spatial division multiplexing system based on optical orbital angular momentum[J]. Optics Letters, 2013, 38(19): 3930-3933.

    [117] Zhou H, Dong J, Zhang J, et al. Retrieving orbital angular momentum distribution of light with plasmonic vortex lens[J]. Scientific Reports, 2016, 6(1): 27265.

    [118] Zhou H L, Fu D Z, Dong J J, et al. Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect[J]. Light: Science & Applications, 2017, 6(2): 119-126.

    [119] Chen Y H, Wang F, Liu L, et al. Generation and propagation of a partially coherent vector beam with special correlation functions[J]. Physical Review A, 2014, 89(1): 013801.

    [120] Liu Z, Yan S, Liu H, et al. Superhigh-resolution recognition of optical vortex modes assisted by a deep-learning method[J]. Physical Review Letters, 2019, 123(18): 183902.

    [121] Yu J, Huang Y, Wang F, et al. Scintillation properties of a partially coherent vector beam with vortex phase in turbulent atmosphere[J]. Optics Express, 2019, 27(19): 26676-26688.

    [122] Gu Y, Gbur G. Scintillation of nonuniformly correlated beams in atmospheric turbulence[J]. Optics Letters, 2013, 38(9): 1395-1397.

    [123] Porat G, Dolev I, Barlev O, et al. Airy beam laser[J]. Optics Letters, 2011, 36(20): 4119-4121.

    [124] Lin Y, Seka W, Eberly J H, et al. Experimental investigation of Bessel beam characteristics[J]. Applied Optics, 1992, 31(15): 2708-2713.

    [125] Zhu K C, Li S X, Tang Y, et al. Study on the propagation parameters of Bessel-Gaussian beams carrying optical vortices through atmospheric turbulence[J]. Journal of the Optical Society of America A, 2012, 29(3): 251-257.

    [126] Peng D, Huang Z, Liu Y, et al. Optical coherence encryption with structured random light[J]. Photonix, 2021, 2(1): 1-15.

    [127] Peng X, Wang H, Liu L, et al. Self-reconstruction of twisted Laguerre-Gaussian Schell-model beams partially blocked by an opaque obstacle[J]. Optics Express, 2020, 28(21): 31510-31523.

    [128] Wang L G, Zhao C L, Wang L Q, et al. Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere[J]. Optic Letters, 2007, 32(11): 1393-1395.

    [129] Cheng K, Lü B. Radiation forces of a focused partially coherent flattened vortex beam on a Rayleigh spherical particle[J]. Optik, 2011, 122(7): 604-609.

    [130] Auón J, Nieto-Vesperinas M. Partially coherent fluctuating sources that produce the same optical force as a laser beam[J]. Optics Letters, 2013, 38(15): 2869-2872.

    [131] Li Y. Light beams with flat-topped profiles[J]. Optics Letters, 2002, 27(12): 1007-1009.

    [132] Zhao C, Cai Y. Trapping two types of particles using a focused partially coherent elegant Laguerre-Gaussian beam[J]. Optics Letters, 2011, 36(12): 2251-2253.

    WANG Zhuoyi, ZENG Jun, ZHANG Hao, LU Xingyuan, ZHAO Chengliang, CAI Yangjian. Coherence modulation and topological charge measurement of vortex field[J]. Chinese Journal of Quantum Electronics, 2022, 39(2): 225
    Download Citation