• Journal of Infrared and Millimeter Waves
  • Vol. 37, Issue 6, 734 (2018)
TIAN Yuan1、2、3, ZHOU Yi1, CHAI Xu-Liang1、2, XU Zhi-Cheng1, CHEN Jian-Xin1、2、3、*, and HE Li1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2018.06.017 Cite this Article
    TIAN Yuan, ZHOU Yi, CHAI Xu-Liang, XU Zhi-Cheng, CHEN Jian-Xin, HE Li. Structural design of long wavelength interband cascade photodetectors[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6): 734 Copy Citation Text show less
    References

    [1] Garwood T, Modine N A, Krishna S. Electronic structure modeling of InAs/GaSb superlattices with hybrid density functional theory[J]. Infrared Physics & Technology, 2017, 81: 27-31.

    [2] Razeghi M, Wei Y, Bae J, et al. Type II InAs/GaSb superlattices for high-performance photodiodes and FPAs[C]//In Active and Passive Optical Components for WDM Communications III. International Society for Optics and Photonics, 2003, 5246:501-512.

    [3] Brown G J. Type-II InAs/GaInSb superlattices for infrared detection: an overview[C]// In Infrared Technology and Applications XXXI. International Society for Optics and Photonics, 2005, 5783: 65-78.

    [4] Nguyen B M, Hoffman D, Delaunay P Y, et al. Band edge tunability of M-structure for heterojunction design in Sb based type II superlattice photodiodes[J]. Applied Physics Letters, 2008, 93(16):163502.

    [5] Gautam N, Plis E, Kim H S, et al. Heterostructure band engineering of type-II InAs/GaSb superlattice based longwave infrared photodiodes using unipolar current blocking barriers[C]//In Infrared Technology and Applications XXXVI. International Society for Optics and Photonics, 2010, 7660: 76601T.

    [6] Yang R Q, Tian Z, Cai Z, et al. Interband-cascade infrared photodetectors with superlattice absorbers[J]. Journal of Applied Physics, 2010, 107(5):054514.

    [7] Tian Z B, Singh A, Rigg K, et al. Mid-infrared interband cascade photodetectors with high quantum efficiency[C]// In Quantum Sensing and Nano Electronics and Photonics XIII. International Society for Optics and Photonics, 2016, 9755:975512.

    [8] Lei L, Li L, Ye H, et al. Long wavelength interband cascade infrared photodetectors operating at high temperatures[J]. Journal of Applied Physics, 2016, 120(19):193102.

    [9] Yang R Q, Xu J M. Analysis of transmission in polytype interband tunneling heterostructures[J]. Journal of applied physics, 1992, 72(10): 4714-4726.

    [10] Harrison P, Valavanis A. Quantum wells, wires and dots: theoretical and computational physics of semiconductor nanostructures[M]. John Wiley & Sons, 2016.

    [11] Heller E R, Fisher K, Szmulowicz F, et al. Superlattice parameters for optimum absorption in InAs/In x Ga1-x Sb superlattice infrared detectors[J]. Journal of applied physics, 1995, 77(11): 5739-5746.

    [12] Van de Walle C G. Band lineups and deformation potentials in the model-solid theory[J]. Physical review B, 1989, 39(3):1871.

    [13] Saha, Sumit, Jitendra Kumar. Rate equation modelling and investigation of quantum cascade detector characteristics[J]. Superlattices and Microstructures, 2016,98:70-77.

    [14] Hua L I G. Resonant tunneling devices and their circuit applications[J]. Physics, 2001, 7: 013.

    [15] Li J V, Yang R Q, Hill C J, et al. Interband cascade detectors with room temperature photovoltaic operation[J]. Applied Physics Letters, 2005, 86(10): 2683.

    [16] Nguyen J, Ting D Z, Hill C J, et al. Dark current analysis of InAs/GaSb superlattices at low temperatures[J]. Infrared Physics & Technology, 2009, 52(6):317-321.

    [17] Tian Z B, Schuler-Sandy T, Krishna S. Dark current in antimony-based mid-infrared interband cascade infrared photodetectors[J]. Infrared Physics & Technology, 2015, 70: 44-47.

    TIAN Yuan, ZHOU Yi, CHAI Xu-Liang, XU Zhi-Cheng, CHEN Jian-Xin, HE Li. Structural design of long wavelength interband cascade photodetectors[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6): 734
    Download Citation