• Acta Photonica Sinica
  • Vol. 50, Issue 10, 1024002 (2021)
Yuan DONG*, Qize ZHONG, Yongjian ZHENG, Shaonan ZHENG, Ting HU, and Yuandong GU
Author Affiliations
  • School of Microelectronics,Shanghai University,Shanghai 200444,China
  • show less
    DOI: 10.3788/gzxb20215010.1024002 Cite this Article
    Yuan DONG, Qize ZHONG, Yongjian ZHENG, Shaonan ZHENG, Ting HU, Yuandong GU. Progress in Wafer-level Metasurface-based Flat Optics(Invited)[J]. Acta Photonica Sinica, 2021, 50(10): 1024002 Copy Citation Text show less
    References

    [1] W T CHEN, Y ZHU, V SANJEEV et al. A broadband achromatic metalens for focusing and imaging in the visible. Nature Nanotechnology, 13, 220-226(2018).

    [2] M KHORASANINEJAD, W T CHEN, R C DEVLIN et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [3] S WANG, P C WU, V C SU et al. A broadband achromatic metalens in the visible. Nature Nanotechnology, 13, 227-232(2018).

    [4] R J LIN, V C SU, S WANG et al. Achromatic metalens array for full-colour light-field imaging. Nature Nanotechnology, 14, 227-231(2019).

    [5] Z FAN, H QIU, H ZHANG et al. A broadband achromatic metalens array for integral imaging in the visible. Light: Science & Applications, 8, 1-10(2019).

    [6] K OU, F YU, G LI et al. Mid-infrared polarization-controlled broadband achromatic metadevice. Science Advances, 6, eabc0711(2020).

    [7] Z LI, P LIN, Y W HUANG et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Science Advances, 7, eabe4458(2021).

    [8] M BOSCH, M R SHCHERBAKOV, K WON et al. Electrically actuated varifocal lens based on liquid-crystal-embedded dielectric metasurfaces. Nano Letters, 21, 3849-3856(2021).

    [9] R WANG, Y INTARAVANNE, S LI et al. Metalens for generating a customized vectorial focal curve. Nano Letters, 21, 2081-2087(2021).

    [10] P C WU, W Y TSAI, W T CHEN et al. Versatile polarization generation with an aluminum plasmonic metasurface. Nano Letters, 17, 445-452(2017).

    [11] N YU, F AIETA, P GENEVET et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Letters, 12, 6328-6333(2012).

    [12] C WU, N ARJU, G KELP et al. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances. Nature Communications, 5, 1-9(2014).

    [13] Q SONG, S KHADIR, S VEZIAN et al. Bandwidth-unlimited polarization-maintaining metasurfaces. Science Advances, 7, eabe1112(2021).

    [14] A H DORRAH, N A RUBIN, A ZAIDI et al. Metasurface optics for on-demand polarization transformations along the optical path. Nature Photonics, 15, 287-296(2021).

    [15] G ZHENG, H MUEHLENBERND, M KENNEY et al. Metasurface holograms reaching 80% efficiency. Nature Nanotechnology, 10, 308-312(2015).

    [16] Y HU, X LUO, Y CHEN et al. 3D-Integrated metasurfaces for full-colour holography. Light: Science & Applications, 8, 1-9(2019).

    [17] H REN, X FANG, J JANG et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nature Nanotechnology, 15, 948-955(2020).

    [18] G QU, W YANG, Q SONG et al. Reprogrammable meta-hologram for optical encryption. Nature Communications, 11, 1-5(2020).

    [19] Q SONG, A BARONI, R SAWANT et al. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces. Nature Communications, 11, 1-8(2020).

    [20] I KIM, M A ANSARI, M Q MEHMOOD et al. Stimuli‐responsive dynamic metaholographic displays with designer liquid crystal modulators. Advanced Materials, 32, 2004664(2020).

    [21] J LI, P YU, S ZHANG et al. Electrically-controlled digital metasurface device for light projection displays. Nature Communications, 11, 1-7(2020).

    [22] P GEORGI, Q WEI, B SAIN et al. Optical secret sharing with cascaded metasurface holography. Science Advances, 7, eabf9718(2021).

    [23] I KIM, W S KIM, K KIM et al. Holographic metasurface gas sensors for instantaneous visual alarms. Science Advances, 7, eabe9943(2021).

    [24] R KAISSNER, J LI, W LU et al. Electrochemically controlled metasurfaces with high-contrast switching at visible frequencies. Science Advances, 7, eabd9450(2021).

    [25] I KIM, J JANG, G KIM et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nature Communications, 12, 1-9(2021).

    [26] S LI, X XU, R M VEETIL et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science, 364, 1087-1090(2019).

    [27] Y XIE, P NI, Q WANG et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nature Nanotechnology, 15, 125-130(2020).

    [28] C MENG, P C V THRANE, F DING et al. Dynamic piezoelectric MEMS-based optical metasurfaces. Science Advances, 7, eabg5639(2021).

    [29] W J JOO, J KYOUNG, M ESFANDYARPOUR et al. Metasurface-driven OLED displays beyond 10,000 pixels per inch. Science, 370, 459-463(2020).

    [30] J S T SMALLEY, X REN, J Y LEE et al. Subwavelength pixelated CMOS color sensors based on anti-Hermitian metasurface. Nature Communications, 11, 1-7(2020).

    [31] W YANG, S XIAO, Q SONG et al. All-dielectric metasurface for high-performance structural color. Nature Communications, 11, 1-8(2020).

    [32] J JANG, T BADLOE, Y YANG et al. Spectral modulation through the hybridization of mie-scatterers and quasi-guided mode resonances: Realizing full and gradients of structural color. ACS Nano, 14, 15317-15326(2020).

    [33] H H HSIAO, C H CHU, D P TSAI. Fundamentals and applications of metasurfaces. Small Methods, 1, 1600064(2017).

    [34] Q HE, S SUN, S XIAO et al. High‐efficiency metasurfaces: Principles, realizations, and applications. Advanced Optical Materials, 6, 1800415(2018).

    [35] N LI, Z XU, Y DONG et al. Large-area metasurface on CMOS-compatible fabrication platform: driving flat optics from lab to fab. Nanophotonics, 9, 3071-3087(2020).

    [36] W T CHEN, Y ZHU, F CAPASSO. Flat optics with dispersion-engineered metasurfaces. Nature Reviews Materials, 5, 604-620(2020).

    [37] Yueqiang HU, Xin LI, Xudong WANG et al. Progress of micro-nano fabrication technologies for optical metasurfaces. Infrared and Laser Engineering, 49, 20201035(2020).

    [38] T HU, C K TSENG, Y H FU et al. Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer. Optics Express, 26, 19548-19554(2018).

    [39] Z XU, Y DONG, C K TSENG et al. CMOS-compatible all-Si metasurface polarizing bandpass filters on 12-inch wafers. Optics Express, 27, 26060-26069(2019).

    [40] Y DONG, Z XU, N LI et al. Si metasurface half-wave plates demonstrated on a 12-inch CMOS platform. Nanophotonics, 9, 149-157(2020).

    [41] S COLBURN, A ZHAN, A MAJUMDAR. Varifocal zoom imaging with large area focal length adjustable metalenses. Optica, 5, 825-831(2018).

    [42] Q ZHONG, Y LI, T HU et al. 1550nm-Wavelength metalens demonstrated on 12-inch Si CMOS platform, 1-2(2019).

    [43] J LIU, M ZHU, N ZHANG et al. Wafer-scale metamaterials for polarization-insensitive and dual-band perfect absorption. Nanoscale, 7, 18914-18917(2015).

    [44] Y NISHIJIMA, A BALCYTIS, S NAGANUMA et al. Kirchhoff’s metasurfaces towards efficient photo-thermal energy conversion. Scientific Reports, 9, 1-9(2019).

    [45] S ZHANG, M H KIM, F AIETA et al. High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays. Optics Express, 24, 18024-18034(2016).

    [46] A SHE, S ZHANG, S SHIAN et al. Large area metalenses: design, characterization, and mass manufacturing. Optics Express, 26, 1573-1585(2018).

    [47] J S PARK, S ZHANG, A SHE et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Letters, 19, 8673-8682(2019).

    [48] Q ZHONG, Y DONG, N LI et al. Large-area metalens directly patterned on a 12-inch glass wafer using immersion lithography for mass production, Th2A. 8(2020).

    [49] T HU, Q ZHONG, N LI et al. A metalens array on a 12-inch glass wafer for optical dot projection, W4C. 3(2020).

    [50] T HU, Q ZHONG, N LI et al. CMOS-compatible a-Si metalenses on a 12-inch glass wafer for fingerprint imaging. Nanophotonics, 9, 823-830(2020).

    [51] N LI, Z XU, Y DONG et al. Large-area metasurface on CMOS-compatible fabrication platform: driving flat optics from lab to fab. Nanophotonics, 9, 3071-3087(2020).

    [52] Z XU, N LI, Y DONG et al. Metasurface-based subtractive color filter fabricated on a 12-inch glass wafer using a CMOS platform. Photonics Research, 9, 13-20(2021).

    [53] Z XU, Y DONG, Y H FU et al. Embedded dielectric metasurface based subtractive color filter on a 300mm glass wafer, STh1O.4(2019).

    [54] Y H FU, N LI, Q ZHONG et al. Metalens with fixed-gap nanopillars for immersion lithography patterning on 12-inch glass wafer, SF2R.7(2020).

    [55] Z XU, N LI, Y DONG et al. CMOS-Compatible Metasurface-based subtractive color filters on a 300-mm glass wafer, JTu2B.28(2020).

    [56] N LI, Y H FU, Y DONG et al. Metasurface beam deflector array on a 12-inch glass wafer, W2A. 9(2020).

    Yuan DONG, Qize ZHONG, Yongjian ZHENG, Shaonan ZHENG, Ting HU, Yuandong GU. Progress in Wafer-level Metasurface-based Flat Optics(Invited)[J]. Acta Photonica Sinica, 2021, 50(10): 1024002
    Download Citation