• Acta Photonica Sinica
  • Vol. 50, Issue 10, 1024002 (2021)
Yuan DONG*, Qize ZHONG, Yongjian ZHENG, Shaonan ZHENG, Ting HU, and Yuandong GU
Author Affiliations
  • School of Microelectronics,Shanghai University,Shanghai 200444,China
  • show less
    DOI: 10.3788/gzxb20215010.1024002 Cite this Article
    Yuan DONG, Qize ZHONG, Yongjian ZHENG, Shaonan ZHENG, Ting HU, Yuandong GU. Progress in Wafer-level Metasurface-based Flat Optics(Invited)[J]. Acta Photonica Sinica, 2021, 50(10): 1024002 Copy Citation Text show less
    Metasurface-based color display on a fabricated 12-inch Si wafer[38]. Adapted with permission from Ref.[38]© The Optical Society
    Fig. 1. Metasurface-based color display on a fabricated 12-inch Si wafer38. Adapted with permission from Ref.[38]© The Optical Society
    Metasurface-based polarizing bandpass filter on a fabricated 12-inch Si wafer[39]. Adapted with permission from Ref.[39]© The Optical Society
    Fig. 2. Metasurface-based polarizing bandpass filter on a fabricated 12-inch Si wafer39. Adapted with permission from Ref.[39]© The Optical Society
    Metasurface-based half-wave plate on a fabricated 12-inch Si wafer[40]. Adapted from Ref.[40],© 2019 Zhengji Xu et al.,published by De Gruyter. Under the Creative Commons Attribution 4.0 Public License
    Fig. 3. Metasurface-based half-wave plate on a fabricated 12-inch Si wafer40. Adapted from Ref.[40],© 2019 Zhengji Xu et al.,published by De Gruyter. Under the Creative Commons Attribution 4.0 Public License
    Metalens fabricated on a 4-inch Si wafer[41]. Adapted with permission from Ref.[41]© The Optical Society
    Fig. 4. Metalens fabricated on a 4-inch Si wafer41. Adapted with permission from Ref.[41]© The Optical Society
    Metalens fabricated on a 12-inch Si wafer[42]. © 2019 IEEE. Reprinted with permission from Ref.[42]
    Fig. 5. Metalens fabricated on a 12-inch Si wafer42. © 2019 IEEE. Reprinted with permission from Ref.[42
    Plasmonic perfect absorber fabricated on an 8-inch Si wafer[44]. Adapted from Ref.[44]. Under the Creative Commons Attribution 4.0 Public License
    Fig. 6. Plasmonic perfect absorber fabricated on an 8-inch Si wafer44. Adapted from Ref.[44]. Under the Creative Commons Attribution 4.0 Public License
    Reflective[45] and transmissive[46] metalenses fabricated on quartz wafers. Adapted with permission from Refs.[45-46]© The Optical Society
    Fig. 7. Reflective45 and transmissive46 metalenses fabricated on quartz wafers. Adapted with permission from Refs.[45-46]© The Optical Society
    Transmissive metalenses fabricated in all quartz glass wafers. Adapted with permission from Ref.[47]© 2019 American Chemical Society
    Fig. 8. Transmissive metalenses fabricated in all quartz glass wafers. Adapted with permission from Ref.[47]© 2019 American Chemical Society
    Metalenses directly fabricated on a 12-inch glass wafer[48-49]. Adapted from Refs.[48-49]
    Fig. 9. Metalenses directly fabricated on a 12-inch glass wafer48-49. Adapted from Refs.[48-49
    Metalens fabricated on a 12-inch glass wafer by layer transfer technology[50]. Adapted from Ref.[50],© 2020 Ting Hu et al.,published by De Gruyter. Under the Creative Commons Attribution 4.0 Public License
    Fig. 10. Metalens fabricated on a 12-inch glass wafer by layer transfer technology50. Adapted from Ref.[50],© 2020 Ting Hu et al.,published by De Gruyter. Under the Creative Commons Attribution 4.0 Public License
    Metasurface deflector fabricated on a 12-inch glass wafer by layer transfer technology[51]. Adapted from Ref.[51],© 2020 Nanxi Li et al.,published by De Gruyter. Under the Creative Commons Attribution 4.0 Public License
    Fig. 11. Metasurface deflector fabricated on a 12-inch glass wafer by layer transfer technology51. Adapted from Ref.[51],© 2020 Nanxi Li et al.,published by De Gruyter. Under the Creative Commons Attribution 4.0 Public License

    Wafer

    Mat.a

    Wafer

    size/inch

    Device

    type

    Characterization

    wavelength

    MS

    Mat.

    MS

    cladding

    Mat.

    MS min.

    CD/nm

    MS

    height/nm

    Lithography

    tool

    Fabrication

    approach

    Ref.
    Si2

    Perfect

    absorbers

    Mid-IR

    (10.0~18.7 µm)

    AuAir>1 00030UV mask aligner

    Direct

    patterning

    43
    Si8

    Perfect

    absorbers

    Mid-IR

    (3~10 µm)

    AuAir~570b50I-line stepper

    Direct

    patterning

    44
    Si12Color display

    Visible

    (0.4~0.8 µm)

    a-SiAir65b130

    193 nm DUV

    immersion scanner

    Direct

    patterning

    38
    Si12Metalens

    Near-IR

    (1.55 µm)

    a-SiAir100850

    193 nm DUV

    immersion scanner

    Direct

    patterning

    42
    Si12

    Polarizing

    bandpass filter

    Near IR

    (1.1~2.5 µm)

    SiAir~170b~750b

    193 nm DUV

    immersion scanner

    Direct

    patterning

    39
    Si12

    Half-wave

    plate

    Near IR

    (1.1~2.5 µm)

    SiAir~200b~1 700b

    193 nm DUV

    immersion scanner

    Direct

    patterning

    40
    Si or SiO2 glass4Metalens

    Near-IR(1.55 µm)

    or Visible(0.633 µm)

    SiNAir5002 000I-line stepper

    Direct

    patterning

    41
    SiO2 glass4Metalens

    Near-IR

    (1.55 µm)

    a-SiAir830600I-line stepper

    Direct

    patterning

    46
    SiO2 glass4Metalens

    Visible

    (0.633 µm)

    SiO2Air2502 000

    248 nm DUV

    stepper

    Direct

    patterning

    47
    SiO2 glass6Metalens

    Mid-IR

    (4.6 µm)

    AuAir80050I-line stepper

    Direct

    patterning

    45
    SiO2 glass12

    Subtractive

    color filter

    Visible

    (0.4~0.8 µm)

    a-SiGlue130b400b

    193 nm DUV

    immersion scanner

    Layer

    transfer

    53
    SiO2 glass12

    Beam

    deflector

    Near-IR

    (0.94 µm)

    a-SiGlue221125b

    193 nm DUV

    immersion scanner

    Layer

    transfer

    51
    SiO2 glass12Metalens

    Near-IR

    (0.94 µm)

    a-SiAirN.A.400

    193 nm DUV

    immersion scanner

    Direct

    patterning

    54
    SiO2 glass12

    Subtractive

    color filter

    Visible

    (0.4~0.8 µm)

    a-SiAir240b400b

    193 nm DUV

    immersion scanner

    Direct

    patterning

    55
    SiO2 glass12Metalens

    Near-IR

    (0.94 µm)

    a-SiGlue100600

    193 nm DUV

    immersion scanner

    Layer

    transfer

    50
    SiO2 glass12Metalens

    Near-IR

    (0.94 µm)

    a-SiAir100400

    193 nm DUV

    immersion scanner

    Direct

    patterning

    48
    SiO2 glass12Metalens

    Near-IR

    (0.94 µm)

    a-SiAirN. A.400

    193 nm DUV

    immersion scanner

    Direct

    patterning

    49
    SiO2 glass12

    Beam

    deflector

    Near-IR

    (0.94 µm)

    a-SiAir100400

    193 nm DUV

    immersion scanner

    Direct

    patterning

    56
    SiO2 glass12

    Subtractive

    color filter

    Visible

    (0.4~0.8 µm)

    a-SiGlue105b110,170,230b

    193 nm DUV

    immersion scanner

    Layer

    transfer

    52
    Table 1. Summary on wafer level metasurface based flat optics38-56
    Yuan DONG, Qize ZHONG, Yongjian ZHENG, Shaonan ZHENG, Ting HU, Yuandong GU. Progress in Wafer-level Metasurface-based Flat Optics(Invited)[J]. Acta Photonica Sinica, 2021, 50(10): 1024002
    Download Citation