• Infrared and Laser Engineering
  • Vol. 52, Issue 3, 20220908 (2023)
Yanli Shi1,2, Yunxue Li1,2, Rong Bai1,2, Chen Liu1,2..., Haifeng Ye1,2, Runyu Huang1,2, Zepeng Hou1,2, Xu Ma1,2, Weilin Zhao1,2, Jiaxin Zhang1,2, Wei Wang1,2 and Quan Fu3|Show fewer author(s)
Author Affiliations
  • 1School of Physics and Astronomy, Yunnan University, Kunming 650000, China
  • 2Key Lab of Quantum Information, Yunnan University, Kunming 650000, China
  • 3Yunnan Precious Metals Laboratory Co. Ltd, Kunming 650000, China
  • show less
    DOI: 10.3788/IRLA20220908 Cite this Article
    Yanli Shi, Yunxue Li, Rong Bai, Chen Liu, Haifeng Ye, Runyu Huang, Zepeng Hou, Xu Ma, Weilin Zhao, Jiaxin Zhang, Wei Wang, Quan Fu. Advancement of shortwave infrared single-photon detectors (invited)[J]. Infrared and Laser Engineering, 2023, 52(3): 20220908 Copy Citation Text show less
    References

    [1] B Zhang, S Yin, Y Liu, et al. High performance InGaAs/InP single-photon avalanche diode using DBR-Metal reflector and backside micro-lens. Journal of Lightwave Technology, 40, 3832-3838(2022).

    [2] J Liu, Y Xu, Y Li, et al. Ultra-low dead time free-running InGaAsP single-photon detector with active quenching. Journal of Modern Optics, 67, 1184-1189(2020).

    [3] A Tosi, F Acerbi, M Anti, et al. InGaAs/InP single-photon avalanche diode with reduced afterpulsing and sharp timing response with 30 ps tail. IEEE Journal of Quantum Electronics, 48, 1227-1232(2012).

    [4] A Tosi, N Calandri, M Sanzaro, et al. Low-noise, low-jitter, high detection efficiency InGaAs/InP single-photon avalanche diode. IEEE Journal of Selected Topics in Quantum Electronics, 20, 192-197(2014).

    [5] F Signorelli, F Telesca, E Conca, et al. Low-noise InGaAs/InP single-photon avalanche diodes for fiber-based and free-space applications. IEEE Journal of Selected Topics in Quantum Electronics, 28, 1-10(2021).

    [6] Y Fang, W Chen, T Ao, et al. InGaAs/InP single-photon detectors with 60% detection efficiency at 1550 nm. Review of Scientific Instruments, 91, 83102(2020).

    [7] S Wang, H Ye, L Geng, et al. Design, fabrication, and characteristic analysis of 64×64 InGaAs/InP single-photon avalanche diode array. Journal of Electronic Materials, 51, 2692-2697(2022).

    [8] Itzler M A, Entwistle M, Krishnamai U, et al. SWIR Geigermode APD detects cameras f 3D imaging[C]Proceedings of SPIE, 2014, 9114: 91140F.

    [9] Beijing RMY Electronics Ltd. Pigtailed Coaxial Single Photon Avalanche Diode (SPAD) PGA314501. Product Deion[Z], 2020.

    [10] Bin Li, Wei Chen, Xiaofeng Huang, et al. InP cap layer doping density in InGaAs/InP single-photon avalanche diode. Journal of Infrared and Millimeter Waves, 36, 420-424(2017).

    [11] C Liu, H Ye, Y Shi. Advances in near-infrared avalanche diode single-photon detectors. Chip, 1, 100005(2022).

    [12] Y Liang, Y Chen, Z Huang, et al. Room-temperature single-photon detection with 1.5-GHz gated InGaAs/InP avalanche photodiode. IEEE Photonics Technology Letters, 29, 142-145(2017).

    [13] S Baek, S Yang, C Park, et al. Room temperature quantum key distribution characteristics of low-noise InGaAs/InP single-photon avalanche diode. Journal of the Korean Physical Society, 78, 634-641(2021).

    [14] E Kizilkan, U Karaca, V Pesic, et al. Guard-ring-free InGaAs/InP single-photon avalanche diode based on a novel one-step Zn-diffusion technique. IEEE Journal of Selected Topics in Quantum Electronics, 28, 1-9(2022).

    [15] H Chen, M Jiang, S Sun, et al. Room temperature continuous frequency tuning InGaAs/InP single-photon detector. AIP Advances, 8, 75106(2018).

    [16] A Tada, N Namekata, S Inoue. Saturated detection efficiency of single-photon detector based on an InGaAs/InP single-photon avalanche diode gated with a large-amplitude sinusoidal voltage. Japanese Journal of Applied Physics, 59, 72004(2020).

    [17] L C Comandar, B Fröhlich, J F Dynes, et al. Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm. Journal of Applied Physics, 117, 83109(2015).

    [18] C Park, S Cho, C Park, et al. Dual anode single-photon avalanche diode for high-speed and low-noise Geiger-mode operation. Optics Express, 27, 18201(2019).

    [19] N Namekata, S Sasamori, S Inoue. 800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photo-diode operated with a sine wave gating. Opt Express, 14, 10043-10049(2006).

    [20] Namekata N, Adachi S, Inoue S. HighSpeed Singlephoton Detection Using 2GHz Sinusoidally Gated InGaAsInP Avalanche Photodiode[M]. Berlin, Heidelberg: Springer, 2009: 3438.

    [21] N Namekata, H Takesue, T Honjo, et al. High-rate quantum key distribution over 100 km using ultra-low-noise, 2-GHz sinusoidally gated InGaAs/InP avalanche photodiodes. Opt Express, 19, 10632-10639(2011).

    [22] Jun Zhang, Patrick Eraerds, Nino Walenta, et al. 2.23 GHz gating InGaAsInP singlephoton avalanche diode f quantum key distribution[EBOL]. (20100217)[20221230]. https:arxiv.gabs1002.3240.

    [23] Z L Yuan, B E Kardynal, A W Sharpe, et al. High speed single photon detection in the near infrared. Applied Physics Letters, 91, 41114(2007).

    [24] Baba T, Suzuki Y, Makino K, et al. Development of an InGaAs SPAD 2D array f flash LIDAR[C]Proeedings of SPIE, 2018,10540: 105400L.

    [25] Xiuchuan Zhang, Liqun Jiang, Xinjiang Gao, et al. Fabrication of InGaAs/InP Geiger-mode avalanche focal plane arrays. Semiconductor Optoelectronics, 36, 356-360(2015).

    [26] B F Aull, E K Duerr, J P Frechette, et al. Large-format Geiger-mode avalanche photodiode arrays and readout circuits. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-10(2018).

    [27] Albota M A, Gurjar R, Mangognia A, et al. The airbne optical systems testbed (AOSTB)[Z]. Lexington, Massachusetts, United States: MIT Lincoln Labaty, 2017.

    [28] Yongqiang Chen, Yan He, Yuan Luo, et al. Pulsed three-dimensional imaging lidar system based on Geiger-mode APD array. Chinese Journal of Lasers, 50, 0210001(2023).

    [29] D A Ramirez, M M Hayat, G Karve, et al. Detection efficiencies and generalized breakdown probabilities for nanosecond-gated near infrared single-photon avalanche photodiodes. IEEE Journal of Quantum Electronics, 42, 137-145(2006).

    [30] M S Ferraro, W S Rabinovich, R Mahon, et al. Position sensing and high bandwidth data communication using impact ionization engineered APD arrays. IEEE Photonics Technology Letters, 31, 58-61(2019).

    [31] X Meng, S Xie, X Zhou, et al. InGaAs/InAlAs single photon avalanche diode for 1550 nm photons. Royal Society Open Science, 3, 150584(2016).

    [32] J Zhang, H Wang, G Zhang, et al. High-performance InGaAs/InAlAs single-photon avalanche diode with a triple-mesa structure for near-infrared photon detection. Optics Letters, 46, 2670-2673(2021).

    [33] Zhang Jishen, Xu Haiwen, Zhang Gong, et al. First InGaAsInAlAs singlephoton avalanche diodes (SPADs) heterogeneously integrated with Si photonics on SOI platfm f 1550 nm detection[C]2021 Symposium on VLSI Circuits, 2021.

    [34] Y Tian, Q Li, W Ding, et al. High speed and high sensitivity InGaAs/InAlAs single photon avalanche diodes for photon counting communication. Journal of Lightwave Technology, 40, 5245-5253(2022).

    [35] S R Bank, J C Campbell, S J Maddox, et al. Avalanche photodiodes based on the AlInAsSb materials system. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-7(2018).

    [36] Danong Zheng, Xiangbin Su, Yingqiang Xu, et al. High gain and low dark current AlInAsSb avalanche photodiodes grown by quaternary digital alloys. Journal of Infrared and Millimeter Waves, 40, 172-177(2021).

    CLP Journals

    [1] Yang Cao, Yang Su, Lianjun Jiang, Ming Liu, Shuyang Guo, Wenzhe Zhang, Yuqiang Fang, Song Gao, Zunyao Chen, Zhitong Chen, Lin Yu, Shibiao Tang. Afterpulse suppression scheme of InGaAs/InP high speed sinusoidal gated single photon detector[J]. Infrared and Laser Engineering, 2024, 53(4): 20230701

    Yanli Shi, Yunxue Li, Rong Bai, Chen Liu, Haifeng Ye, Runyu Huang, Zepeng Hou, Xu Ma, Weilin Zhao, Jiaxin Zhang, Wei Wang, Quan Fu. Advancement of shortwave infrared single-photon detectors (invited)[J]. Infrared and Laser Engineering, 2023, 52(3): 20220908
    Download Citation