[1] B Zhang, S Yin, Y Liu, et al. High performance InGaAs/InP single-photon avalanche diode using DBR-Metal reflector and backside micro-lens. Journal of Lightwave Technology, 40, 3832-3838(2022).
[2] J Liu, Y Xu, Y Li, et al. Ultra-low dead time free-running InGaAsP single-photon detector with active quenching. Journal of Modern Optics, 67, 1184-1189(2020).
[3] A Tosi, F Acerbi, M Anti, et al. InGaAs/InP single-photon avalanche diode with reduced afterpulsing and sharp timing response with 30 ps tail. IEEE Journal of Quantum Electronics, 48, 1227-1232(2012).
[4] A Tosi, N Calandri, M Sanzaro, et al. Low-noise, low-jitter, high detection efficiency InGaAs/InP single-photon avalanche diode. IEEE Journal of Selected Topics in Quantum Electronics, 20, 192-197(2014).
[5] F Signorelli, F Telesca, E Conca, et al. Low-noise InGaAs/InP single-photon avalanche diodes for fiber-based and free-space applications. IEEE Journal of Selected Topics in Quantum Electronics, 28, 1-10(2021).
[6] Y Fang, W Chen, T Ao, et al. InGaAs/InP single-photon detectors with 60% detection efficiency at 1550 nm. Review of Scientific Instruments, 91, 83102(2020).
[7] S Wang, H Ye, L Geng, et al. Design, fabrication, and characteristic analysis of 64×64 InGaAs/InP single-photon avalanche diode array. Journal of Electronic Materials, 51, 2692-2697(2022).
[8] Itzler M A, Entwistle M, Krishnamai U, et al. SWIR Geigermode APD detects cameras f 3D imaging[C]Proceedings of SPIE, 2014, 9114: 91140F.
[9] Beijing RMY Electronics Ltd. Pigtailed Coaxial Single Photon Avalanche Diode (SPAD) PGA314501. Product Deion[Z], 2020.
[10] Bin Li, Wei Chen, Xiaofeng Huang, et al. InP cap layer doping density in InGaAs/InP single-photon avalanche diode. Journal of Infrared and Millimeter Waves, 36, 420-424(2017).
[11] C Liu, H Ye, Y Shi. Advances in near-infrared avalanche diode single-photon detectors. Chip, 1, 100005(2022).
[12] Y Liang, Y Chen, Z Huang, et al. Room-temperature single-photon detection with 1.5-GHz gated InGaAs/InP avalanche photodiode. IEEE Photonics Technology Letters, 29, 142-145(2017).
[13] S Baek, S Yang, C Park, et al. Room temperature quantum key distribution characteristics of low-noise InGaAs/InP single-photon avalanche diode. Journal of the Korean Physical Society, 78, 634-641(2021).
[14] E Kizilkan, U Karaca, V Pesic, et al. Guard-ring-free InGaAs/InP single-photon avalanche diode based on a novel one-step Zn-diffusion technique. IEEE Journal of Selected Topics in Quantum Electronics, 28, 1-9(2022).
[15] H Chen, M Jiang, S Sun, et al. Room temperature continuous frequency tuning InGaAs/InP single-photon detector. AIP Advances, 8, 75106(2018).
[16] A Tada, N Namekata, S Inoue. Saturated detection efficiency of single-photon detector based on an InGaAs/InP single-photon avalanche diode gated with a large-amplitude sinusoidal voltage. Japanese Journal of Applied Physics, 59, 72004(2020).
[17] L C Comandar, B Fröhlich, J F Dynes, et al. Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm. Journal of Applied Physics, 117, 83109(2015).
[18] C Park, S Cho, C Park, et al. Dual anode single-photon avalanche diode for high-speed and low-noise Geiger-mode operation. Optics Express, 27, 18201(2019).
[19] N Namekata, S Sasamori, S Inoue. 800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photo-diode operated with a sine wave gating. Opt Express, 14, 10043-10049(2006).
[20] Namekata N, Adachi S, Inoue S. HighSpeed Singlephoton Detection Using 2GHz Sinusoidally Gated InGaAsInP Avalanche Photodiode[M]. Berlin, Heidelberg: Springer, 2009: 3438.
[21] N Namekata, H Takesue, T Honjo, et al. High-rate quantum key distribution over 100 km using ultra-low-noise, 2-GHz sinusoidally gated InGaAs/InP avalanche photodiodes. Opt Express, 19, 10632-10639(2011).
[22] Jun Zhang, Patrick Eraerds, Nino Walenta, et al. 2.23 GHz gating InGaAsInP singlephoton avalanche diode f quantum key distribution[EBOL]. (20100217)[20221230]. https:arxiv.gabs1002.3240.
[23] Z L Yuan, B E Kardynal, A W Sharpe, et al. High speed single photon detection in the near infrared. Applied Physics Letters, 91, 41114(2007).
[24] Baba T, Suzuki Y, Makino K, et al. Development of an InGaAs SPAD 2D array f flash LIDAR[C]Proeedings of SPIE, 2018,10540: 105400L.
[25] Xiuchuan Zhang, Liqun Jiang, Xinjiang Gao, et al. Fabrication of InGaAs/InP Geiger-mode avalanche focal plane arrays. Semiconductor Optoelectronics, 36, 356-360(2015).
[26] B F Aull, E K Duerr, J P Frechette, et al. Large-format Geiger-mode avalanche photodiode arrays and readout circuits. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-10(2018).
[27] Albota M A, Gurjar R, Mangognia A, et al. The airbne optical systems testbed (AOSTB)[Z]. Lexington, Massachusetts, United States: MIT Lincoln Labaty, 2017.
[28] Yongqiang Chen, Yan He, Yuan Luo, et al. Pulsed three-dimensional imaging lidar system based on Geiger-mode APD array. Chinese Journal of Lasers, 50, 0210001(2023).
[29] D A Ramirez, M M Hayat, G Karve, et al. Detection efficiencies and generalized breakdown probabilities for nanosecond-gated near infrared single-photon avalanche photodiodes. IEEE Journal of Quantum Electronics, 42, 137-145(2006).
[30] M S Ferraro, W S Rabinovich, R Mahon, et al. Position sensing and high bandwidth data communication using impact ionization engineered APD arrays. IEEE Photonics Technology Letters, 31, 58-61(2019).
[31] X Meng, S Xie, X Zhou, et al. InGaAs/InAlAs single photon avalanche diode for 1550 nm photons. Royal Society Open Science, 3, 150584(2016).
[32] J Zhang, H Wang, G Zhang, et al. High-performance InGaAs/InAlAs single-photon avalanche diode with a triple-mesa structure for near-infrared photon detection. Optics Letters, 46, 2670-2673(2021).
[33] Zhang Jishen, Xu Haiwen, Zhang Gong, et al. First InGaAsInAlAs singlephoton avalanche diodes (SPADs) heterogeneously integrated with Si photonics on SOI platfm f 1550 nm detection[C]2021 Symposium on VLSI Circuits, 2021.
[34] Y Tian, Q Li, W Ding, et al. High speed and high sensitivity InGaAs/InAlAs single photon avalanche diodes for photon counting communication. Journal of Lightwave Technology, 40, 5245-5253(2022).
[35] S R Bank, J C Campbell, S J Maddox, et al. Avalanche photodiodes based on the AlInAsSb materials system. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-7(2018).
[36] Danong Zheng, Xiangbin Su, Yingqiang Xu, et al. High gain and low dark current AlInAsSb avalanche photodiodes grown by quaternary digital alloys. Journal of Infrared and Millimeter Waves, 40, 172-177(2021).